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Abstract

In this paper, by using the definition of fuzzy cquivalence relations introduced by Dib and Youssef, we obtain
fuzzy analogues of many results concerning ordinary equivalence relations. Moreover, we investigate fuzzy ana-
logues of many results concerning relationships between ordinary cquivalence relations and ordinary functions.
In particular, we obtain the fuzzy canonical decomposition of a fuzzy function.
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1. Introduction

In the usual set theory, functions are special types
of relations and relations are subsets of Cartesian prod-
uct. Thus the concept of Cartesian product plays an
important role in the usual theory of relations and
functions. Almost all authors have worked with fuzzy
relations without referring to what may be called fuzzy
Cartesian product (See [1,3,6,7]).

However, in 1991, by using J-fuzzy sets, Dib and
Youssef introduced the notion of fuzzy Cartesian prod-
uct and they defined a fuzzy relation as a subsct of
the fuzzy Cartesian product. This definition is differ-
ent from all known definitions of fuzzy relations. Also
they defined a fuzzy function as a special type of a
fuzzy relation. We can see that this definition gener-
alizes Zadeh's definition and is different from thosc in
[3]. In particular, Hur et al. [5] obtained fuzzy ana-
logues of many results concerning ordinary equivalence
relations and partitions.

In section 2, by using the definition of fuzzy equiv-
alence relations introduced by Dib and Youssef., we
obtain fuzzy analogues of many results concerning or-
dinary equivalence relations.

In section 3, we investigate fuzzy analogues of
many results concerning relationships between ordi-
nary equivalence relations and ordinary functions. In
particular, we obtain the fuzzy canonical decomposi-
tion of a fuzzy function.

2. Preliminaries
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In this scction, are list some definitions and some
results needed in the next sections.

The totally ordered set I = [0, 1] is a distributive
but not complemented lattice under the operations of
infimum A and supremum V. On J =1 x I we define
a partial order <, in terms of the partial order on I,
as follows: For every (r1,72), (s1,82) € J,

(i) (r1,72) < (s1,s2) if and only if ry < 871, 79 < 82
whenever s; # 0 and s9 # 0,
(i) (0,0) = (s1, s2) whenever s; =0 or s = 0.

It is clear that J is a distributive but not comple-
mented vector lattice. The operations of infimum and
supremum in J are given respectively by: For every
(riore). (s1,82) € J,

(r1.72) A (81, 82) = (r1 A 81,72 A 82)
and
(7'1,7‘2) \ (517 82) S (T1 vV 81,72 V SQ),
where the equality holds in the last relation when

For sets X,)Y and Z,.f = (f1,f2) : X - Y x Z
is called a compler mapping if f1 : X — Y and
fa : X — Z are mappings, where f(z) = (f1(z), f2())
for each z € X.

Definition 2.1[5]. Let X be a nonempty set.
A complex mapping A = (pa,n4) : X — J is
called a J-fuzzy set (in short, fuzzy set) in X, where



A(x) = (palz),na(z)) for cach = € X, In particu-
lar, @ and X denote the J-fuzzy empty set and J-
fuzzy whole set in X defined by @(x) = (0,0) and
X(r)=(1,1) for each = € X, respectively.

The notation {(z, A(x)) r € X} or simply
{(z.7)}, where r = A(z), will be used to denote a
fuzzy set in X (see [7]). Similarly, a .J-fuzzy set in X,
a fuzzy set in X x Y and a J-fuzzy sct in X x Y will
be denoted respectively by {(z, (r1.72))}, {((z,y),7)}
and {((x,y), (r1,72))}. To cach fuzzy sct {(x.71)} in
X and fuzzy set {(y,r2)} in Y there corresponds a .J-
fuzzy set {((z,y). (r1,7r2))} in X x Y. Throughout this
paper, the notation (x,r) € A means that A(x) = r.
where A € 1%, and XY, Z, ete denote ordinary sets.

Definition 2.2[2]. Let X and Y be two ordinary
sets. Then the collection of all J-fuzzy scts in X x YV
is called the fuzzy Cartesian product of X and Y and
is denoted by X'xY. Hence X XY = JXxY,

The fuzzy Cartesian product of a fuzzy set A =
{(z,7)} in X and a fuzzy set B = {(y.5)} in V is the
J-fuzzy set AxB in X x Y defined by:

AxB=A{((z.y).(r.s))z e X,y Y}

= {((z.1). (r.5))}-

It is clear that AxB € XXY for ecach A € I~
and B € IY. The above definitions can be gencralized
for any finite number of sets. Furthermore, the above
definitions can be generalized in an obvious way by re-
placing the unit interval I by an arbitrary completely
distributive lattice.

Definition 2.3[2]. p is called a fuzzy relation from
X to Y if p C XXY. In particular, p is called a fuzzy
relation in X if p € XX X.

It is clear that X XV is itself a furzy relation from
X to Y. Any collection of Ax B, where 4 € I* and
B € IV is a fuzzy relation from X to Y.

The fuzzy Cartesian product X x X is called the
universal fuzzy relation in X. The fuzzy relation
ODx0 = 0 is called the empty fuzzy relation. Between
these two extreme cases, lies the identity fuzzy re-
lation, denoted by Ax, where Ay is the fuzzy re-
lation in X whose members are the J-fuzzy sets
{((z,2), (r,r)) e € X and r € ).

Definition 2.4[2]. Let py.py C XXY.

(1) We say that py is contained in po if when-
ever ((z,y),(ri.r2)) € A € py, there exists B € po
such that ((x,y). (r1,72)) € B. In this casc, we write
1 C p2.
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(2) We say that p; and py are equal if p; C ps and
p2 C p1. In this case, we write p; = po.

To cach J-fuzzy set C = {{(z,y).(r,s))} iIn X x YV
we associate a J-fuzzy set C71 in Y x X defined by

C = {((y.2), (s,7)}

Definition 2.5[2]. Let p C X xY. Then the inverse
of p, denoted p~t, is the fuzzy relation from Y to X
defined by p~! = {C~1: C € p}.

Definition 2.6[2]. Let p € XXY and let 0 C Y XZ.
Then the composition of p and o, denoted o o p, is the
fuzzy relation from X to Z whose constituting J-fuzzy
sets C € X X Z are delined as follows:

((z,2), (r1,73)) € C if and only if there exists
(y,r2) € Y x I such that ((x,y),(r1,72)) € A and
((y,2). (ra,73)) € B for some A € p and B € 0. Hence
gop={C € XXZ:C is as defined above }.

It is clear that if p C X x X, then Ay op C p and
polx Cp.

Result 2.A[2, Proposition in p.303]. Let
D, P15 P2, P3, 01, 02 be any fuzzy relations defined on the
appropriate sets. Then:

(1) (p1op2)ops =pio(p2ops)

1 -1

p~ ) =p and (prop2)t =patop

(
(pUp2) t=pi P Upah
( -1 _ plfl m/)zil.

(2)

(3)

(4)

(5) ;1 Cpe = p Tyt
(6)

(7)

(8)

Definition 2.7[2]. Let p C XxX. Then p is said to
be:

(1) reflezive in X if for cach z € X and r € I,
there exists A € p such that ((z,x),(r,r)) € A4, ie.,
Ax Cp.

(2) symmetric in X if whenever ((z,y),(r,s)) €
A € p, there exists B € p such that ((y,z). (s,7)) € B,
e, p~t=p.

(3) transitive in X if whenever ((z,y), (r,5)) € A €
pand ((y.2),(s,t)) € B € p, there exists C' € p such
that ((z,z), (1)) € C, e, pop Cp.

(4) a fuzzy equivalence relation in X if it is reflex-
ive, symmetric and transitive. We will denote the set
of all fuzzy cquivalence relations in X as FRelg(X).

It is clear that X x X, Ax € FRelg(X).

Result 2.B[2, Theorem 1]. Let p € FRelg(X).
Then

(1) For cach 2y € X, pinduces an (ordinary) equiv-
alence relation p, (zp) in I defined by:
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p[(mO) - {(T> S) €J:dAep
s.t. ({zo, 20). (r.5)) € A}
(2) For each rg € I, p induces an (ordinary) equiv-
alence relation p,, (ro) in X defined by:
px(ro)={(z,y) e X x X :34cp
s.t. ((z,9), (ro,m0)) € A}

Result 2.C[2, Corollary in p.304]. To cach p €
FRelp(X) there are associated an ordinary equiva-
lence relation p, in I and an ordinary equivalence re-
lation p, in X. In fact,

pr = Neexpr(x) and  py =(Nocrpx(r)-
In this case, p, [resp. p,] is called the equivalence
relation in I [resp. X ] associated to the fuzzy equiva-
lence relation p.

Definition 2.8[2]. Let X be a nonempty set. Then
H is called a fuzzy cutting on X if H is a function of
X into the power set of I, i.e., H : X — P(I). In
this case, we will denote H as {(x,H,) : » € X} or
simply {(x, H,)}, where H, = H(x) is the subset of [
corresponding to x € X.

A fuzzy cutting on X is said to be empty and is
denoted by @ if ), = 0 for each z € X. A fuzzy cutting
on X is said to be universal and is denoted by | if
U, =1 foreach z € X, ie, |J= {(a. 1)}

A fuzzy set A € I¥ is said to be contained in
the fuzzy cutting H of X, symbolically A C H, if
A(xz) € H, for each x € X for which H, # @ and
A(xz) = 0 whenever H, = . Note that # is the fuzzy
set in X contained in the empty fuzzy cutting, and
that | contains all fuzzy sets in X.

Let H = {(z,H,)} and H' = {(z, H,")} be fuzzy
cuttings on X. Then H is said to be contained in H',
symbolically H C H', if H, C H,' for each 2 ¢ X.
Clearly, ® ¢ H c | for each fuzzy cutting H of X.
The union H U H' of H and H’ is the fuzzy cutting
defined by HU H' = {(x, H, U H,")}. The operations
of intersection, complements, etc. on fuzzy cuttings
are similarly defined. The fuzzy cuttings H and H’
are said to be disjoint if H, N H," = () for cach x € X.
A collection of fuzzy cuttings is said to be disjoint if
each pair of this collection is disjoint.

Let p € FRelg(X). Then, by Result 1.B(1), p
induces an equivalence relation p,(x) in I, for each
x € X. Let the equivalence class of r € I with respect
to p,(x) be denoted by [r], or 7/p,(z). In fact.

rle = {sel:(rs)ep()}
= {sel:3Aecp st. ((z,2),(rs)) € A}
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For each zg € X and rg € I, we define a fuzzy cutting
H(xg.70) on X as follows: For each y € X, if there
exists r € I such that ((xo,y), (r0,7)) € A for some
A € p. we set H(xg,79)(y) = [r]y and it such r does
not exist, we set H(wg,70)(y) = 0. It is clear that the
function H(zo,70) : X — P(I) is well-defined (see [2]).

Result 2.D[2, Proposition in p.305]. Let p €
FRelg(X). For every x,x1,22 € X and let r,7r1,72 €
I. we have:

(1) (z,[r],) € H(z,7). Hence H(x,7) # 0.

(2) ((zy,72),(r1,72)) € A € p if and only if
H(xy,7m) = H(xa, re).

(3) (r,71) € p,(z) if and only if H(z,r) = H(z,71).

(4) If H(zy,m1) O H(xg,79) # 0, then H(zi,7m1) =
H(xs.79).

<5) U;ceX,rel H(I T) = X.

Definition 2.9[2]. Let p € FRelg(X), let z € X and
let - € I. Then the fuzzy cutting H(z,r) is called the
fuzzy equivalence class of (x,7) with respect to p (or
the p-fuzzy equivalence class of (z,r)) and is denoted
by [(x.7)], or simply [(x,r)] if there is no ambiguity.

Let p be a fuzzy equivalence relation in X. Then
we will denote the set of all p-fuzzy equivalence classes
as X/p and call it the fuzzy quotient set of X by p.

Result 2.E[5,Proposition 3.9]. Let p € FRelg(X),
let 2,y € X and let .5 € I. Then [(z,7)], = [(v,5)],
if and only if [r]z = [s]y-

3. Pre-image, restriction and quotient
of fuzzy equivalence relations

Definition 3.1[2]. Let X and Y be nonempty sets.
Then a fuzzy relation F from X to Y is called a fuzzy
function from X to Y if F: IX — IY is a function
characterized by the ordered pair (F, {f; }sex ), where
F: X — Y is a function and {f;},ex is a family of
functions f, : I — I satisfying the conditions:

(a) f5 is nondecreasing on I,

(8) £.(0) =0 and £(1) = 1,
such that the image of any fuzzy set A in X under F
is the fuzzy set in Y defined by: For each y € Y,

1 T Alx if @,
mmy:{gﬁp<wf<u» it Féﬁi@
In this case, we write F = (F,{f,}zex) : X — Y or

simply F = (F, fz) : X — Y and we call the functions
fz. # € X, the comemberhip function to F.



Example 3.1. Let X = {z,y.7z} and let YV =
{a,b,c.d,e}. Consider the mappings ' : X — Y and
foo I — Iz & X, arc respectively given by:
Flx)=a, Fly)=b, F(z)=¢
and
fr =id; for each x € X.
Then we can easily see that F
fuzzy function.

X —=Yisa

(F: f»z:) :

Definition 3.1 can be generalized in an obvious
way by replacing the unit interval I by an arbitrary
complete and completely distributive lattice.

Theorem 3.2. Let X and Y be nonempty sets, let
F=(Ff):X — Y bea fuzgy function and let
p € FRelg(Y). We define the fuzzy relation F~1(p) in
X as follows:

F= o) = {{(x,y), (s} € XXX : JA€p st
(F(@), F()), (fo(r), fy(s))) € A},

Then F1(p) € FRelg(X). In this case, F~1(p) is
called the pre-image of p under F,
Proof. Let x € X and let » € I. Since p

is reflexive in Y, there cxists 4 € p such that
((Fx), F(a)), (e () () € A. Then theve ex-
ists B € F~1(p) such that ((z,2),(r,7)) € B. Thus
F=Yp) is reflexive in X. Suppose ((x.y),(r.s)) €
A € FYp). Then there exists B € p such
that ((F(x), F(y), (fo(r), fu(s)) € B. Since p
is symmetric in Y, there exists ¢ &€ p such that
({(F(y), F{ x)), (fy(s ) (7)) € C. Thus there cxists
DeF Y )smh that (( ), (s,7)) € D. So F1(p) is
symmetric in X. Suppose ((2,), (r.s)) € A € F~Y{p)
and {(y,2),(s,t)) € B € F !{p). Then there exist
C,D <€ p such that ((F(z), F(y)), (fe(r). fy(s))) € C
and ((F(y), F(2)), (f,().£-(0)) € D Sice p

is transitive in Y, there exists F € p such that

((F(KI“)fF(2>),(fw(r),fz(z‘,)}) € E. Thus there exists
E' € F~Y(p) such that ({(z,2),(r,1)) € E'. So F~!{p)

is transitive in X. Hence F~1(p) is a fuzzy equivalence
relation in X. J

Example 3.2. Let F = (F, f,}: X — Y be the fuzzy
function in Example 2.1 and let p = Ay U {4, A7)
be the fuzzy relation in Y defined as follows :

A a b c d e
(ro.to) (ro,to) (ro,to) (ro.to) (ro,to)
b | (ro.to)  (ro.to) (ro.to) (ro.to) (ro.to)
e | (ro.to) (ro.to) (ro,to) (ro.to) (ro,t0)
d | (ro.to) (ro.to) (ro.to) (ro.to) (ro,to)
e | (ro.,to) (ro.to) (ro,to) (ro.to) (ro.to)

Fuzzy Equivalence Relations and Fuzzy Functions

where (rg.tg) € J is fixed and g # o,

Then p is a fuzzy equivalence rclation in Y and

F-1(p) = Ax U{B,B™'}, where
x| (ro,to)  (ro.to)  (ro.to)
y | (ro,to)  (ro-to)  (roto)
z | (ro,t0)  (ro.to)} (ro.to)
Moreover it is clear that p € FRelp(X). O

Definition 3.3, Let p € FRelg(X) and let ¥ C X.
Then the fuzzy restriction of p to Y, denoted by py,.,
is a fuzzy relation in Y defined as follows:

Py =AC lyxy € YXY O € p}.

The following is the immediate result of Definition
3.3.

Proposition 3.4. p,,
in Y.

is a fuzzy equivalence relation

Proposition 3.5. Let p € FRelp(X) and let YV < X.
Then for cach z € Y and r € I,
KLF"/")L}[y} i [(‘T'T)}p ly-

Proof For each y € Y, suppose therc exists s € 1
such that {(z.y),{r,s)) € A for some A € p. Then
(a,m)]oly () = s/p, (y). Since 2,y € Y, Alyxy € p-y..
Thus [(w,7)],. (y) = $/py,, (y). Moreover, we can
casily see thd‘r s/p,(y) = 8/py, ()
s € I does not exist. Then [(x, z)]

[(z, 7)),y (y). Hence K;I?,?‘ﬂp“

Suppose such
/) = g =

(=, ,)] v O

Proposition 3.6. Let p,o € FRelg(X) andlet p C a.
If (z,7/0,(2)) € [(x,t)]o. then [(z,7)], C [{x,t)],.

Proof. Supposc (z,7/0,(z)) € |(z,%)]s. Then
[(x,t)]o(z) = r/o,(z). Thus there exists A € o such
that ((r.2).(1,7)) € A Let (y.5/p, (1) € [(2,7)]y
Then [(z.7)],(y}) = s/p,(y). Thus there exists
Bep such that ({(z,y),(r,s)) € B. Since p C o.
there exists C € o such that ((z,y),{r,8})) € C.
Since o is transitive, there exists D € ¢ such that
((.y). (t.s) € D. Thus (y.s/0,(y)) € [(@.0)]s.
e, [(z,D)]s(y) = s/o,(y). Since p C o, s/p,(y) C
so,w) S0 [(rlm) < [0l  Hence
(2.7l € [ Blo-

Corollary 3.6. Let p,o € FRelp(X
(z,m)], C [(x.7)], for each (z.7)

).  p C o, then
e X x 1.

23



International Journal of Fuzzy Logic and Intelligent Systems, Vol. 9, No. 1, March 2009

Theorem 3.7. Let p,o € FRelg(X) and let p C o.
We define a fuzzy relation o/p in X/p as follows:

B of/p = {UCr. 7))y [y s)lp)- (wv))} €
X/pXX/p:3JA€o st.
(#,9), (r5) € A u =

Neer/py@ b and v=»Aco), ot}
Then o/p is a fuzzy equivalence relation in X/p.
In this case, o/p is called the fuzzy quotient of o by p.

Proof. Let (z,u) € X x I. Since p € FRelg(X),
there exists r € I such that [(x,7)], € X/p and
u = /\ter/pI () - Since o is reflexive in X, there ex-
ists A € o such that ((x,2),(r.7)) € A. Then there
exists B € o/p such that (([(z.7)],. [(x.7)],). (v.w)) €
B. Thus o/p is reflexive in X/p. Suppose
(o [y, 8)]p)s (w,v)) € A € o/p. Then
there exists A € o such that ((z,9),(r.s)) € A.
u = /\tGT/pI(w)t and v = /\tes/p,(y) t.  Since o
is symmetric in X, there exists B € o such that
({y,2),(s,7)) € B, v = /\1‘63/;)[(1/)2‘ and v =
/\t@'/ﬂz (x) b Thus there exists C' € ¢/p such that
(([ty, 8)1p, [(,7)],5), (v,u)) € C. So o/p is symmetric
in X/p. Suppose (([(z,7)],,[(y:)]p). (w.v)) € A €
o/p and (([(y, )]s (5 ))p)r (0,10)) € B € o/p. Then
there exist C, D € o such that ((x.y).(r.s)) € C.

w = /\GGT/pI () @ U= /\aes/p](y) aand ((y,2).(s.1)) €
D, v = /\aES/pI(wa and w = /\aet/pj(z) a. Since
o is transitive in X, there exists £ € o such
that ((z,2),(r,t)) € E, u = /\a@,/ﬂ[(w)a and
w = /\aet/pI (-y@ Thus there exists F' € o/p such
that (([(z, )], [(2,8)],). (v,w)) € F. So o/p is transi-
tive in X/p. Hence o/p is a fuzzy equivalence relation

in X/p. O
Proposition 3.8. Let p,o,m € FRelg(X). If p C o
and ¢ C 7, then o/p C 7/p.

Proof. Let (([(z. 7)), [(y,5)],). (u.v)) € A € a/p.

Then there exists B € o such that ((z,y),(r,s)) € B.
u = /\tGT/pI(.T)t and v = /\tGS/pI(y) t.  Since
o C , there exists C' € m such that ((z,y),(r,s)) €
B. Thus there exists D € 7/p such that

(@, m)p [y, 8)]p)s (w,0)) € D. Hence o/p C
7/ p. O

Theorem 3.9. Let p. 0,7 € FRelg(X), let p C o and
let o C 7.

() pCoom.

(2) If c o € FRelg(X), then (a/p) o (x/p) =
(0om)/p.

(3) (o/p) o (w/p) is a fuzzy equivalence relation in
X/p.

24

Proof. (1) Let ((x,y),(r,s)) € A € p. Since p C o,
there exists B € o such that ((z,y), (r,s)) € B. Since
o C . there exists C' € 7 such that ((z,y), (r,s)) € C.
Since o is reflexive in X, there exists D € o such that
((y.y). (s,8)) € D. Thus there exists ¥ € o on such
that ((z,y),(r,8)) € E. So p Coom.

(2) Suppose o o ® € FRelp(X). Let
(77,1 [(2, ), (w,w) € A € (o0 m)/p. Then
there exists B € o o 7w such that ((z,2),(r,t)) €
B, u = /\aET/pI(a:)a and w = /\aet/pl(z) a. Thus
there exists (y,s) € X x I such that ((z,y),(r,s)) €
C and ((y,2),(s,t)) € D for some C € =
and D € o. Let v /\aES/pI(y) a.  Since
p C o C w, there exist £ € 7/p and F €
o/p such that (([(z,7)],, [(¥,9)],), (u,v)) € E and
(([(y-9)]p. [(2.t)]), (v,w)) € F. Thus there exists G €
(0/p) o (/p) such that (([(x,7)], (2, 1)]p) (v, w)) &
¢ So (oomp < (ofp) o (n/p).  Now
et (([(. g (2. D)), () € A€ (afp) o
(r/p). Then there exists ([(y,s)],,v) € X/p x
I such that (([(x, 7)), [(¥,5)]p), (u,v)) € B and
<([<y15)}ﬂ7[(thﬂp)a(vvw)) € C for some B € 7T/,0
and C' € o/p. Thus there exist D € 7 and £ € ¢
such that ((z,v),(r,s)) € D, ((y,2),(s,t)) € E, u =

Nacrip, )% V= Nacsso, @ 804 W = Noeyp () @

So there exists F € o o w such that ((z, 2), (r,t)) € F.
Since ¢ o 7 is a fuzzy equivalence relation in X and
p C oo, there exists G € (o o m)/p such that
(22 [(5: D)) (,0)) € G- Thus (/) o (/) ©
(00 7)/p. Hence (o/p) o (n/p) = (o0 )/p.

(3) For each (z,7) € X x I, let u =
/\aET/ﬂ,(x) a. Since o/p and 7/p is reflexive
in X/p, there exist A € w/p and B € o/p
such that (([(z,7)],, [(z,7)],), (w,u)) € A and
(([(z, )]s [(2,7)]), (w,u)) € B. Thus there exists C' €
(o/p)e(m/p) such that (([(z, )], [(2,7)],), (u, u)) € C.
So (o/p) o (w/p) is reflexive in X/p. Now sup-
pose ({2, o [(5)],), (ww) € A € (a/p) o
(7/p).  Then there exists ([(y,s)],,v) € X/p x
I such that (([(z, 7)), [(¥,s)],), (u,v)) € D and
(([(y, 8)]p: (2. 1)), (v,w)) € E for some D € 7/p and
for some ¥ € o/p. Thus there exist D' € mand E' € ¢
such that ((z,y),(r,s)) € D', ((y,2),(s,t)) € E', u =
Naer/o, )% ¥ = Naesso, ) @ W = Nacryp, (2) &
Since 7 and ¢ are symmetric in X, there exist D" € =
and E"’ € o such that ((y,z),(s,7)) € D" and
((z,y),(t,s)) € E’. Then there exist G € 7/p and
F € o/p such that ((((3, 5)]p, [(2,)],), (v, u)) € F and
(([(z, )], [y, 8)],), (w,v)) € G. Thus there exists H &
(o)) o (x/p) such that (([(21)]» (2, )], (w,u)) €
H. So (o/p)o(m/p) is symmetric in X/p. Finally, sup-
pose (([(2,7)]p. [ 5)],), (1)) € A € (a/p) o (x/p)
and ([, )]y (5 8)]), (w,w) € B € (a/p) o
(7/p). Then there exists ([(a/,7)],,v') € X/p x 1



such that (([(z,r)],. [(z'.7

(([=", 7],

Np).(wu)y € C and
W, 8)],). (Wov)) € D for some C € w/p
and D € a/p, and there exists ([(v/,s)],,7") € X/px1
such that (([(y,$)],. (¥, s)],). (v.,0)) € E and
([, "), Uz, 0)),p). (W w)) € F for some E € 7/p
and F' € o/p. Moreover, u = /\a@,fﬂ] & W=

Naero,@1 % ¥ = Nacojo, @ V' = Naew /o,
and w = /\aEt/p[(z) a. Thus there exist ¢/ € x
and D' € o such that ((z.2'),(r.7")) € ¢’ and
((«".y),(r'.5)) € D', and there exist E/ € «
and F' € o such that ((y,¢v).(s.s")) € D’ and
(/. 2), (s, 1)) € F'. Since ¢ C m, there oxists
D" ¢ m such that ((z/.y),{r',s)) € D". Since 7
is tramsitive in X. there exists ¢ € = such that
((@,y').(r,s")) € G. Then therc exist G’ € n/p and
F" ¢ o/p such that (([(z,7)],. [(v/,s)],), (w,0")) €
G and (([(¢,8)],,[(z,8)]),), (W' w)) € F”. Thus
there exists H € (o/p) o (w/p) such that
([ ]y [+ )],), (wy0)) € H. So (a/p) o (x]p)
is transitive in X/p. Hence {o/p}) o (5r/p) is a fuzzy
equivalence relation in X/p. ]

Theorem 3.10. Let p € FReli(X) and let 0 €
FRelg(Y). Let p- o be the fuzzy relation in X x Y
defined as follows:
pro={{{[(z.w), (y,2)].(r,s))} e (X xY)X(X xY) :
dAe pand B € Ost ((z,9),(r,s)) € A
and {{w, z), (r,s)) € B}.
Then p-o € FRelp(X x Y). In this case, p- o is
called the fuzzy product of p and o.

Proof. Let {(z.y).{x,9)] € X x Y and let v € I.
Since p is reflexive in X and o is reflexive in Y, there
exist A € p and B € ¢ such that ((z.z),(r.7)) € A
and ((y.y), (r,r)) € B. Thus there exists C € p- o
such that ([(z,y), (z.y)], (r,7}) € C. So p- o is reflex-
ive in X x Y. Now suppose ([(z.w),{y,2)].{r,s})) €
A € p-o. Then therc exist B € p and ' € o
such that ((x,y),(r.s)) € B and ((w,2),(r,s)) € C.
Since p and o are symmetric, there exist B' € p
and C' € o such that ((y.x).{(s,r)) € B and
((z,w),(s,7)) € C'. Thus there exists 4’ € p- o such
that ([(y, 2). (z,w)], (s,7)) € A'. So p- ¢ is symmetric
in X x Y. Finally suppose ([(z.w),(y,2)],(r,s)) €
A€ p-oand ([(y,2),(w,v),(s,1)) € B € p-o.
Then there exist B,C € p and D, F € o such
that ((z,y),{r9)) € B, {{w,2),(r,s)) € D and
((g.u), (s,1)) € C, {{z,v),(s,1)) € E. Since p and o
are transitive, there exist F' € p and G € o such that
((zyu). (rt)) € F and ({w,v), (r, %)) € G. Thus there
exists H € p- o such that ([{x,w), (u,e}],(rt)) € H.
So p - o is transitive in X X Y. Hence p- o is a fuzzy
equivalence relation in X x Y. [

Fuzzy Equivalence Relations and Fuzzy Functicns

Proposition 3.11. Every fuzzy equivalence relation
in a set X ig the pre-image of a fuzzy equivalence
relation in X x X

Proof. Let F = {F,id;) : X — X x X be the
fuzzy function defined as follows: F(z) = (z,)
for each # € X. Let p be a fuzzy equivalence re-
lation in X. Consider the fuzzy product p - p in
X x X. Then clearly p- p is a fuzzy equivalence re-
lation in X x X by Theorem 3.10. We shall show
that p = F*p-p). Let ((z,y),(r,s) € A €
F~Yp - p). Then, by Theorem 3.2, there existb
B € p-psuch that ((F(z), F(y)), (id;(r ) idg(s))) €

Since F(z) = (z.z), {[(z,2),(v,y)].(rs)) € B
Thus, by the definition of fuzzy product, there ex-
ist ¢,D € p such that ((az,yf)t(r, 5)) € C and
((z,y),(r.s)) € D. So FYp p) < p. Now let
((2,y), (r.5)) € A € p. Then there exists B € p-p
such that ([(x (y.y)], (. 8)) € B. By the definition
of F, ((F(x), ( )),(Ld](?"),id;(s)}} € B. Thus there
exists C € F~1{(p - p) such that ((z,y),{(r,s)) € C. So
p CF Yp-p). Hence p=F {p-p). O

Proposition 3.12. Let F = (F, f,) : X
be a fuzzy function and let p € FRelg(Y).
“L(p) =F~lopoF.

— Y

Then

Proof. Let {{z,y),{r,s)) c AeF

exists B € p such that ((F(x), F(y
B. Since F(z,r) = (F (3),fx(r)) there exists C' € IF
such that ((x, F(2), (r, fz(r)) € C. Thus there exists
D € polF such that ((x, F(y)) Ju(s)) € D. Since
Fly,s) = (F{y) fy(s)), there exxsts C" € F~! such
that ((F(y),y), (f,(s),s)} € F~1. Thus there cxists
D' ¢ F! o/;o]F such that ((z,y),(r,s)) € D'. So
F-Yp) C Ftopol. By the similar arguments, we
can sec that F~! o po I C F~*(p). This completes the
proof. O

Y(p). Then there

))s (fa(r), fy(5)) €

4. Fuzzy equivalence relations and fuzzy
functions

Two fuzzy functions F = (F, f;) and G = (G, ¢,)
from X to Y are said to be equal, symbolically F = G,
if F(A) = G(A) for each A € I%.

Result 4.A[2, Theorem 5]. Two fuzzy functions
F=(F,f,) and G = (G, g,) from X to Y are equal if
and only if F =G and f, = g, for each z € X.

Let F=(F [.): X — Y be a fuzzy function. The

inverse image under F of a fuzzy set B in Y, written
F~Y(B), is a fuzzy sct in X defined by:
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F(B) =

Result 4.B[2, Proposition in p.311]. Let F =
(F, fz) : X — Y be a fuzzy function whose comember-

ship functions f, are surjective. Then for each fuzzy
set BinY,

U{Cc e 1¥ : F(C) c B}.

“HB) =V [ B(F(x))].

where the supremum is taken over the set of values
f N B(F(2)] C I

Result 4.C[2, Theorem 6]. Let F = (F, f,): X —
Y be a fuzzy function. Let A, B € IX, {A boer C I
and let O, D € IV, {Co}uer C IV. Then:

F = X.
If C C D, then F~1(C) C F~(D).
F-Y{F(A)) D A (equality holds if F is injec-

If f. is surjective for each = € X, then:

(9) F(Uger Aa) = Uqer F(Aa)-
(10) F(Myer Aa) € Naer F(Aa) (equality holds if

Fis 1n]ect1ve)
( ) (U er Cu) - UaeF Fil(cu)-
( ) (ﬂ er Ca) - ﬂaer Fil(cu)
(13) F(F=1(C)) C C (equality holds if F' is surjec-

tive).

If fp(1—=r)>1— fu(r)foreachz € X, r € I, then:
(14) F(A°) D (F(A))° if F is surjective (Equality

holds if F is bijective and f,(1 —7)=1— f.(r)).

If £, is bijective and if f,(1 —r) =1— f,(r), then

(15) F4(D*) = (F~1(D))".
| The composition of two fuzzy functions F =
(F.fy) : X - Yad G = (G,g2) : ¥ — Z
is the fuzzy function G o F : X — Z defined by
(GoTF)(A) = G(F(A)).

Let F = (F, f.) : X — Y be a fuzzy function.
F is said to be injective if for any A;, Ay € IX with
F(A;) = F(A2), Ay = As. Surjective and bijective
fuzzy functions can be defined similarly in an obvious
manner. It is not difficult to prove that F is injective
[resp. surjective] if and only if F and f,, 2 € X, are
injective [resp. surjective].

A fuzzy function F = (F, f,) X — Y is

said to be invertible if there exists a fuzzy function
G = (G,gy) : Y — X such that GoF = idx and
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FoG = idy, where idx = (idx,idr). The fuzzy func-
tion G is called the inverse of F and is denoted by F~1.

Result 4.D[2, Theorem 7]. Let F = (F, f) : X —
Y and G = (G,gy) : Y — Z be fuzzy functions. Let
gy be surjective for each y € Y. Then:

(1) The composition GoF : X — Z of F and G is
given by

GoF=(GoF, g, o fz)-

(2) F = (F, f,) is injective [resp. surjective] if and
only if F and f,, € X, are injective [resp. surjective].

(3) F = (F, f.) is invertible if and only if F' and
f. are invertible. The inverse F~! of F is given by
Ft = (F~L f7h.

Let B = (F,f,) : X — Y be a fuzzy func-
tion. We dcfine a fuzzy relation p in X as follows:
p={{{(x.y). (r9))} € XXX : F(z) = F(y) and

felr) = fy(9>}
Then it is easy to show that p is a fuzzy equivalence
relation in X. In this case, p is called the fuzzy equiv-
alence relation determined by F or the fuzzy Kernel of
F and will be denoted by p, or Ker F.

Theorem 4.1. Let F = (F,f,) : X — Y be a sur-
jective fuzzy function and let p € FRelg(X) such that
P C p We define the image of p under F as follows:
(0) = {((P(@), F(y)), (1, u)} € YXY : A€ p
and r,s € I s.t.((z,y),(r,s) €A
t = fy(r) and u= f,(s)}.
Then F(p) € FRelp(Y).

Proof. Let (y,t) € Y x [. Since F = (F, fy) : X = Y
is surjective, by Result 4.D(2), F : X — Y and
fy + I — 1 are surjective. Then there exists
(,7) € X x I such that ¢ = f,(r) and y = F(z).
Since p is reflexive, there exists A € p such that
((z,2),(r,7)) € A. Thus there exists B € F(p)
snch that ((F(2), F(2)), (6,1) = ((19), (1,8)) € B.
So Ay C F(p), ie., F(p) is reflexive in Y. Sup-
pose ((F(z),F(y)),(t,u)) € A € F(p). Then there
exist B € p and r,s € I st. ((z,9),(r,s)) € B,
t = fo(r) and u = fy(s). Since p is symmetric,
there exists C € p such that ((y,z),(s,7)) € C,
u = f,(s) and t = f,(r). Thus there exists D € F(p)
such that ((F(y), F(z)),(u,t)) € D. So F(p) is
symimetric in Y. Suppose ((F(z),F(y)),(t,u)) €
4 € ¥(p) and (F(y),F(2)),(u,v) € B € F(p).
Then there exist A’ B’ € p and rq1,r3,r3 € I such
that ((.’E,y),(7'1,7"2)) € A/7 ((y,Z),(T'Q,Tg)) € Bl:
t = fo(r1), w = fy(rz) and v = f,(r3). Since
p is transitive, there exists C' & p such that
((z,2),(r1,73)) € C. Thus there exists D € F(p)
such that ((F(z), F(z)),(t,v)) € D. So F(p) is transi-



tive in Y. Hence F(p) € FRelg(Y). O

Theorem 4.2. Lot F = (F, f,): X — Y be a surjec-
tive fuzzy function and let p be any fuzzy equivalence
relation in Y, Then:

(1) p. CF(p).

(2) o = (p) if and only if p = F(0).
Hence there exists a one-to-one correspondence be-
tween the fuzzy equivalence relations in Y and the
fuzzy equivalence relations in X containing p..

Proof. (1) Let ((z,9),(r,5)) € A € Then Flx) =
F(y) and f.(r) = f,(s). Since p is Ioﬂoxm, therc ex-
ists B € p such that ((F(z),F(y)). (fx(r), fy(s))) €
B.  Thus therc exists ¢ € F~'(p) snch that
((z,y). (r.s)) € C. Hence p, C F~1{p).

(2) (=): Suppose ¢ = F~!(p). Then, by (1).
p. C o. Thus, by Theorem 4.1, F{o) € FRelp(Y).
Now let ({y.9/). (t,u)) € A € p. Since F = (F, f,)
X — Y is a surjective fuzsy function by Result

4D(2), F: X — Y and f, : I — I are surjec-
tive. Thus there exist 2,2 ¢ X and r,s € I such
that y = F(z), y = F(2') and ¢ = [f(r), u = f(s).
S0 ((F(2). F(a).(f(r).1(5))) € 4°€ p. By the
definition of F~1(p), there exists B € F~}{p) such
that ((z,2'),(r,s)) € B. Since 0 = F~*(p), by the
definition of ]F(a) there exists ¢ € F(o) such that

((F (), P, (), () = ((,9), (1)) € C. So
p C F(o). Sund(nl} we can see that F(o) C p. Hence
p="F(o).

(«<): Suppose p = F(o). Then, by the similar
arguments, we can easily see that o = F~1(p). This
completes the proof. O

Proposition 4.3. EF = (F, f,): X — Y be a fuzzy
function, then p, = F~ 1o,

Proof. Let ((x,y),(r.s) € A € py. Th(n%(?) F{y)
and fo(r) = fy(s). Since F(z,r) = (F(x). fz(r))
and F(y.s) = (F(y). fy(s)). there (..\ISt B e F
and C € F~" such that ((z, F(z)),(r. f.(+)) € B

and  ((F{y),1
((F(x), 1) (fal

y). (fy(s),s)) € C. In particular,
r),s)) € €. Thus therce exists D ¢

F~' o F such that ((x.y), (r,s)) € D. So pr C F-1oF.
By the similar arguments. we can see that F~1oF C py.
Hence pp = F ' o F. O
Proposition 4.4, Let F = (F, f,) : X — Y and

G =(G,ygy): Y — Z be fuzzy functions and let g, be
surjective for each y € Y. Then F~'{p.) = p._..

Proof. Let ((x,y),(r.s)) € Ae F 1 p,).

exists B € p_ such that

(F(e). Fly), (f=(r). [y(5))) € B. Thus
(GoF)(x) = G(F(z)) = G(F(y)) = (GoF)(y)

Then there

Fuzzy Equivalence Relations and Fuzzy Functions

and

) <9F(m) “ fJ«)(’} = ,.(}F(T,)(fﬁ(r)\} = qw><f<;(5)> =
ey © fy)(s).

Moreover, by Result 4.D(1), GoF = (GoF, g, © f).

So there exists C' € p, . such that ({z,y),(r,s)) € C,
ie.. F71(p.) C p.... By the similar arguments, we can
see that p,, C F~ ()) Hence F~Hp.) = pe.. O

Let p be a fuzzy equivalence rclation in a set X.
We define a fuzzy relation F from X to X/p as follows:
For each (&, r) € X x I,

F={{{z, F(z),7, fo(r))} € XXX/p},

where F' @ X — X/p is the mapping given by
F(ry = [(@.r)], and f, : I — I is the mapping
given by fo(r) = Ae, /o, (@) t. Then it is easy to sec
that F = (F, f,) : X — X/p is a fuzzy function. In

this case, F is called the canonical fuzzy function from
X to X/p.

Theorem 4.5. Let p be a fuzzy equivalence relation
imaset X. fF=(F, f,): X > X/pis the canonical
fuzzy function, then p = p,.

Proof. Let ({w,y).{r.s)} € A € p. Then, by Re-
sult 2.D(2), [(x,r)], = [(y.s)],. Thus, by Result
LE, 7/p,(x) = s/p,(y). So, by the definition of F,
F(z) = Fly) and f.(r) = f,(s). Thus there exists
B € p, such that ((z.y),(r.s)) € B and hence p C p,.
Now let ((z,y).(r.s)) € A € p,. Then, by the defi-
nition of p,, F{z) = F(y) and f.(r) = f,(s). Thus

(@, )], = [(y.8)],. So, by Result 1.D(2), there exists
C ¢ psuch that ((x,y),(r,s)) € C and hence p, C p.
Therefore p = p,. O

Let X and Y be sets and let F = (F, f,): X — Y
be a fuzzy function. Then we will define three fuzzy
functions R, S, T, obtained from F, which play an im-
portant in many mathematical arguments. Let p be a
fuzzy equivalence relation in X determined by F.

R = (R.r,) : X — X/p is the canonical fuzzy
function from X to X/p.

S =(8,s,): X/p — F(X) is the fuzzy function
defined as follows:
For each ([(x,7)],.1) € X/p x I

S([(. ), ) = (S({(1)])s 5(),

where S : X/p — F(X) is the mapping given by
S([(x.7)],) = F(x) and s, : I — [ is the mapping
eiven by s, = id;.

T = (T.t;)
defined as follows:
For cach (y, s) € IF(X)

: F(X) — Y is the fuzzy function

T(y. ( ().t (9)):
where T @ F(X) — Y is the inclusion mapping of
F(X)inY and t, : I — [ is the mapping given by
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ty = id;.

The following is the immediate result of above def-
initions and Result 4.D.

Theorem 4.6. Let X and Y be sets, let F = (F, f,) :
X — 'Y be a fuzzy function, let p be the fuzzy equiva-
lence relation determined by F and let R, S. T be the
fuzzy functions defined above. Then R is surjective. §
is bijective, T is injective and F = T oS o R.

We may sum up the foregoing results by saying
that any fuzzy function F = (F, f,) : X — Y can be
expressed as a composite of three fuzzy functions R.
S, T which are, respectively, surjective. bijective and
injective. This is referred to as the fuzzy canonical de-
composition of F, and it will be customarily exhibited
in a diagram such as the following:

R S T
X an X/p w F(X) %Y.

One of the results of Theorem 3.6 is especially usec-
ful; namely, that if F = (F, f,) : X — YV is a fuzzy
function, then X/p, and F(X) are in one-to-one cor-

respondence. This will be customarily expressed by
writing X/p. = F(X).

The following is the immediate result of Result
4.C(2) and Theorem 4.6.

Corollary 4.6. Let F = (F, f,) : X — Y be a fuzzy
function. If ¥ is surjective, then X/p, = Y.

Proposition 4.7. Let p,0 € FRelg(X) such that
p Co HF=(FFf):X — X/pis the canonical
fuzzy function, then o/p = F(o).

Proof. Let (([{z, 7)), [(y,5)],),(u,v)) € A € a/p.
Then there exists B € o such that ((x,y), (. s)) € B.
u = /\ter/pj@)t and v = /\tES/pl(y)t' Since
F = (F,f,) : X — X/p is the canonical fuzzy func-
tion, F(z) = [(x,7)]p, F(y) = [(y.8)lp u = fa(r)
and v = f,(s). Thus there exists C' € F(o) such
that ((F(z), F(y)), (u,v)) € C. So o/p C F(o). By
the similar arguments, we can see that F(o) C o/p.
Hence o/p = F(0). O

Proposition 4.8. Let p,0 € FRelg(X
p Co. UF=(Ff):
fuzzy function, then o =

} such that
X — X/p is the canonical
1 (/p).

Proof. Let ((z,y),(r,s)) € A€ 0. Since F = (F, f,) :

X — X/p is the canonical fuzzy function, F(z) =
[(1’,7’)}/), F(y) - [(Iyas)}pa fab(r) = /\ter/pl(;r:)t and
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fy(8) = Nies/p () t- Then there exists B € o/p such
: tes/p,

that ((F(z), F(y)), (f+(r), fy(s))) € B. Thus there

exists C € F~ (o /p) such that ((z,y),(r,s)) € C. So

o CFY{og/p). By the similar arguments, we can eas-

ily see that F~1(o/p) C 0. Hence 0 =F~'(a/p). O

We can easily sce that the following holds.

Proposition 4.9. Tet F = (F,f,) : X — Y be a
fuzzy function and let p be any fuzzy equivalence re-
lation in X such that p C p,. We define a fuzzy
relation F/p from X/p to Y as follows: For each

([Ge.r)lpruw) € X/p < I,
F/p={(@.7)]p, Fz),u,v)} € X/pxY},

where F/p : X/p — Y is the mapping given by
(F/p)[(z.7)],) = F(x) and (f/p)iery, : L — 118
the mapping given by (f/p)((z,m, (1) = fx( ) =wv and
u = /\tEI/pI(I)t' Then F/p = (F/p7 (f/p> x,r)];,) :
X/p — Y is a fuzzy function from X/p to Y. In this
case, F/p is called the fuzzy quotient of IF by p.

The following is the immediate result of Proposi-
tion 4.9 and Result 4.D(2).

Proposition 4.10. Let p,o € FRelg(X) such that
pCo. IfF = (Ff,): X — X/o is the canonical
fuzzy function, then F/p: X/p — X/o is surjective.

Theorem 4.11. Let F = (F,f;) : X — Y be a
fuzzy function and let p € FRelg(X). If p C p,, then

PP =Py,
Proof.  Let (([(z, 7)) [(y,s)]p), (u,v)) € A €
p-/p- Then there exists B € p, such that

((z,y).(r.8)) € B, u = /\tGT/pI(z)t and v =
/\tes//)1<y> t. Thus F(z) = F(y) and f,(r) = fy(s).
Since F/p = (F/p.(f/P)(z,m),) + X/p — Y is the
fuzzy quotient, (F/p)([(z,7)|,) = F(z) = F(y) =
(F/o)(:5)],) and (F/olpn,) @) = Folr) =
fy(8) = (f/P)iw.s),)(v). Thus there exists C €
p.,, such that (([(z, )] [(s,5)],), (w,v)) € C. So
p-/p C p.,,. Now let (. [(9:9)]). (w.0)) €
Ae o Then Fo) — (Flp(@nl) =
(E/o) (5. 9)],) = Fl) and £u(r) = (F/Diew, ) (0) =
(f/P)icy.s,) () = fy(s). Thus there exists C' € p,
such that ((z,y),(r,s)) € B. Moreover, u =
/\tGT/pI(I>t and v = A/, (,t. Thus there exists

I
C € p;/p such that (([(z,7)]p, [(y,5)]p), (w,0)) € C.
So p.,, C p-/p- Hence p,/p = pg,,- O

The following is an example of the use of Theorem
4.11.



Proposition 4.12. Let p,0 € FRel(X) such that
pCoandlet ¥ = (F f;): X — X/o be the canonical
fuzzy function. Then (X/p)/(o/p) = X /0.

Proof. Since F= (F, f,) : X — X/o is the canonical
fuzzy function, by Theorem 4.5, ¢ = p,. Thus, by
Proposition 4.9, F/p « X/p — X/o is a fuzzy func-
tion. So, by Theorem 4.11, o/p = p,, . Moreover, by
Proposition 4.10, F/p is surjective. Hence, by Corol-
lary 4.6, (X/p)/{o/p) = X/o. O

Problem 4.A. Let p,o.nn € FRelgp(X) such that
pCoCn UF=(Ff):X > X/p,G=(G,g.):
X —X/ocandH=(H,h,): X — X/n are the canon-
ical fuzzy functions, then Hl/p = H/o o G/ p?

Problem 4.B. Let p and o be any fuzzy equivalence
relations in X. Then do the following hold?

(1) X/(poo)=~(X/p)/(poa/p).

(2) X/p= (X/pOo)/(p/pNa).

References

1] 3. C. Bezdek and J. D. Harris, Puzzy partitions
and relations; an aziomatic basis for clustering,
Fuzzy Sets and Systems 1 pp.111-127.1978.

[2] K. A. Dib and Nabil L. Youssef, Fuzzy cartesian
product, fuzzy relations and fuzzy functions, Fuzzy
Sets and Sustems 41 n».299-315.1091.

Fuzzy Eguivalence Relations and Fuzzy Functions

[3] M. A. Erceg, Functions, equivalence relations,
quotient spaces and subsets in fuzzy set theory,
Fuzzy Sets and Systems 3 pp.75-92,1980.

[4] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl.
8 pp.145-174,1967.

(5] K. Hur, H. W. Kang and K.C.Lee, Fuzzy equiva-
lence relations and fuzzy partitions, Honam Math.
J. 28(3) pp.291-315,2006.

[6] V. Murali, Fuzzy equivalence relations, Fuzzy Sets
and Systems, 30 pp.155-163,1989.

[7] W. C. Nemitz, Fuzzy relations and fuzzy func-
tions, Fuzzy Sets and Systems 19 pp.177-
191,1986.

8] L. A. Zadeh, Fuzzy sets, Inform. and Control 8
pp.338-353,1965.

Keon Chang Lee

Department of Computer Science,
Dongshin University,

Naju, Cheonnam, Korea 520-714
F-mail: kelee@dsu.ac.kr

29



