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Abstract

We propose some properties for fuzzy binomial proportion test by agreement index. First we define fuzzy probability
space and fuzzy type 1 error and type I error for the fuzzy probability of the two type errors. Also, we show that a
fuzzy power function of perfortnance for a fuzzy hypothesis test and drawing conclusions from the test.

Key Words :

1. Preliminaries

In the traditional approach to hypotheses testing all
the concepts are precise and well defined for survey re
search data. However if we consider vagueness into
observations, we would be faced that hypotheses are
quitely new and interesting problems.

We obtained from the fuzzy samples, the negation of
the assertion is taken to be the fuzzy null hypothesis
Hy and the assertion itself is taken to be the fuzzy al-
ternative hypothesis 7.

In testing a null fuzzy hypothesis H, against an al
ternative fuzzy hypothesis#,, our attitude is to uphold
H, as true degree unless the data speak strongly
against it, in which case, H, should be rejected in favor
of H, by degree of acceptance and rejection{[11.[5]).

Kang, Choi and Lee[2] and defined fuzzy hypotheses
membership function also they found the agreement in-
dex by area for fuzzy hypotheses membership function
and membership function of fuzzy critical region. Also
Kang, Choi and Han[3] obtained the results by the
grade for judgement to acceptance or rejection for the
fuzzy hypotheses.

Thus, we introduction some properties of fuzzy bino
mial proportion test by agreement index. First we de-
fine fuzzy probability space and fuzzy type I error and
type I error for the fuzzy probability of the two types
of errors. Also, we show that a fuzzy power function of
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performance of a fuzzy test and drawing conclusions
from a test.
We considered the fuzzy hypothesis

Hy 6= or Hp8<19, 606 (1D
constructed by a set
{(Hy (), B () €0} (1.2)

with membership function m () where € is parame-
ter space.

A fuzzy number 4 in R is said to be convex if for
any real numbers x y zeR With y<y< 2z,

m,(y) Zmy(z) Amy(z) (1.3)

with A standing for minimum.
A fuzzy number A is called normal if the following
holds

\/ mAx) =1 (1.4

An §—level set of a fuzzy number A is a set denoted

by [4)° and is defined by
(A ={zlm,(z) 26,0 <6 < 1} (15)

An 6—level set of fuzzy number 4 is a convex fuz-
zy set which is a closed bounded interval denoted by
(AP =147, 4]].
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2. Fuzzy probability

The concept of probability is relevant to experiments
that have same what uncertain outcoms. Thus uncertain
outcom is fuzzy concepts.

We denote by z=ux(s) the possible outcome of an

fuzzy random experiment of subject s and will be call
the fuzzy sample point.

Definition 2.1. The sample of an fuzzy random experi-

ment of subject s is a pair (2(s),®)([6]), where

(1) 02(s) is the set of all possible outcomes of the fuz-
zy random experiment of subject s

(2) & is a o-field of subjects of £2(s).

In general, call £2(s) the valuation set of subject s,
which includes all possible observation result or in-
cludes the observation range of subject s. Let S(s) be

the collection of all subjects of £2(s); then it is the ©
~field of subjects of 2(s). So, (2(s),8(s)) is the sam-
ple space of subject s.

The first method is that any set 4 of S(s) is called
an event; the second method is that is a statement
about the results of an fuzzy random experiment de—
termines an event.

Let @ be the o-field that is generated by such an
event family, any set A<® is called an event.

We must note that now we do not have any proba-
bility measure on sample space (£2,5), next let us dis-
cuss how one can construct a probability on (£2,5) by
the sample of fuzzy random experiment, satisfying the
Kolmogorov axiom.

The fuzzy random experiment can be repeated under
identical fuzzy condition by one and the same subject

E(s) the k-th

trial of subject s, and by z; =x,(s) the sample point
which is a result of E; we say that E(s)={£(s)}.

For each A€, let m 4 (m) be given by

s, for ¢=1,2,---; we denote by E, =

0=<mylz) 1 @an

That is, it is the membership function of fuzzy
events A, and for each x, € (2,,, m ,(z,) have provided
the time information of the occurrence of events A,
which has some uncertainty from the randomness of
samples, (2,. To provide the time information of occur—
rence of events A4 under identical conditions, take the
weighted mean([4]) of all these m,(z,), 1<k<mn,
which have the same weight, that is, for each AE S, let

(i n

lEm‘A(xk) = '];ZmA(xk(S)) (2.2)

Ne=1 =1

P(A4,n,s) =
be the fuzzy probability of occurrence of fuzzy events

A in trials n.
Thus we have following two propositions.
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Proposition 2.1 For any fuzzy random experiment, let
(£2,5) be its common sample space. Then in a sequence
of fuzzy random experiment of subject s(E€S8), the
probability P(4,n,s), n=1,2,--, has all the properties
as follows. For each A€ S, and for each n > 1;

(1) 0< P(A4n,s) <1 2.3)
2 P(2n,s)=1 2.4
() If 4,8 and A,NA;=¢, i+ j; i,j=12,, let

A= UAZ, then P(4,n,s) EPA n,s) (2.5)

Proof. For each 1< k<n, if we have fuzzy samples
wy, (s) then m,(z,(s)) is fixed a set functions sat-
0<m,(z,(s)) =1 for each A€S and
mglz,(s)) =1 is clear.

isfying

For any sequence {4} of disjoint sets of S, let
A=Uy A, if 2,(s)EA4, 1 <k<n then there exist ¢
such that z,(s)E4,. If z,(s) was checked n; times in
A, then we have

= P(4;n,s) , where Z”z =n

i=1

1 ¢
g;cz::lmA(xk(S))

Thus we have P(An,s) EPAns
It follows 0 < P(4A,n,s) < 1 for each A€S,

P(2n,s)=1 and P(An,s)=,P(A,;n,s).

i=1

[l
Proposition 2.2. We have that
(1) P(A%n,s)=1—P(A,n,s). 26)
@ P(p,n,s)=0. .7
3) It A,4,€ © then
P(A1UA2,n,s)
= P(Al,n,s)-l- P(Ag,n,s)— P4, N AZ,n,s).
2.8

Proof. Since

P(A%mn,s) i
= ;ZI—E};mA(mk(S))

3 (1-my (2(5))

_1
= 1_§;;mx4($k(s))

So we have

P(A%n,s)=1—P(A,n,s).

1 k3
From P(A4,UA4,n,s) = zEmAlqu(xk)

= ——EMax{mA (24), mA2(mk)}'

=
Put

5= {%ES] m, () = mAQ(xk)}y



by n; times for 4, (z;) and
S, = {xkESl m (z) < mAz(J;k)}’

by n, times for A4,(z,) and S=8US, n;+n, =n.
Then

1 7 1 n,
P4, U Ayn,s) = " b m s (2,08)) + - N m , (2,/).
6= =1

Since

1
P(A; N Apnys) = ;Znul‘mg(xr,ﬁ)
=1

1 & )
= zg;ﬂfm{m/h (CLA>7 ”3‘,42(417&)}

Ty iy

=— Zm,ll (28,) + =Y m, (8,
n iz ne=1 77

J
Thus we have

P(A1 U Aym,s) = P(Am.s)+ P(A:_,yn,s) - P{A N AQ.,‘n,s)

So we have

1. For set 2{s) of subject s(€9).

2. Any o-field & in 2(s).

3. Set function P(A4,n,5} is a normal measure on 4.
So every such triple (£2(s),®.P(A.n,s)) will be call

a probability space according to the viewpoint of mod-
ern probability theory.

3. Acceptance or rejection degree

Let z be a random sample from sample space . Let
{Ps, 06} be a family of fuzzy probability distribution,
where © is a parameter vector and @ iIs a parameter
space.

Choose a fuzzy hyvpothesis H whose value is likely

to best reflect the plausibility of the fuzzy hypothesis
being tested.

Let us consider fuzzy membership function m ,(z),
which we will call the agreement index of m ,(z)
which regard to mglz).

Definition 3.1. Let a fuzzy membership function
mx), xe R We consider another membership func-
tion 4, 40, =R which call the agreement index, the
ratio being defined in the following way;

area(m (z) im 4{z))

R{AH) =

e0,1] G

area(TnA{x))

as shown in Figure 3.1.

Formulate the structure of the rejection degree region
by saying that fuzzy hypotheses H, should be rejected
if the observed value of fuzzy test statistics 7" is tco

Sel X0 2lgt HA ojgslE HE

large, too small or intermediate, as the case may be in
the following way.

Definition 3.2. We define the maximum grade mem-
bership function of acceptance or rejection degree by
agreement index for real-valued function #; by J—level
on @ as

2)

(mHé(w) N mTa(w)) }
3

area
ngJ(O) :supyz{ area mHg(’j’)
mg, (1) =1-mg (0) (3.3)

for the fuzzy hypothesis testing as Figure 3.1.

Definition 3.3. In agreement index, we have the area
by é—level as:

arealm (z) Nmylz)) :/_él(A;l(cS) —H 48))dé
area My (6) = f;(Afl(d} — A7 8))ds (3.4)

where A, A, are right and left side line of 4, () . A
is left side line of 4, ,(y) and 4 is reliable degree
and &, is meeting point of e and 4, 2

f—

it
My A

1’}’”{(0)

Q

Figure 3.1. Agreement index of m,(z) regard to

me).

4. The two types of fuzzy error

A fuzzy test of the fuzzy null hypothesis is a course
of separation of a fuzzy set if values of a fuzzy random
variable X for which H, is would be rejected. The fuz-
zy random variable whose value serves to determinable
the action is called the fuzzy test statistic, and the fuz-
zy set of its values for which H; is to be rejected is
called the fuzzy rejection region of the test. A fuzzy
test of specifiable by a fuzzy test statistic and the fuzzy
rejection region is denoted by

Hyp<py or Hyip=p,

where < 1is less than or similarity.
Considering the unknown state of nature and the
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possible results from applying a fuzzy test, one of the
following situations will arise:

UNKNOWN TRUE STATE OF
NATURE
TEST H, true H, false
concludes p<bo ( P>b 0)
. Correct Wrong
D t t H,
© not rerect Ho degree (type 1 error)
. Wrong Correct
Reject H;
qect Ho (type I error) degree

Fuzzy Type 1 error : rejection degree of H; when
I is true.
Fuzzy Type O error : failure degree to reject H,

when H, is true.

The probabilities of the two types of error
a= Pltype 1 error]l = Plrejection degree of H, when
Hy is true]

B= Pltype 0 error] = Plnot rejecting degree H, when
H, is truel

The probability a depends on the particular value of
the parameter in the range covered by H,, whereas 8
depends on the value over the range covered by H, and

v(p) = P [the test rejects H, when the true value of
the parameter is pl.

Under H,, p is restricted to the range p < p;, which
is to the left of the middle vertical membership function
in Figure 4.1. In this part of the graph, the rejection
probability ~(p) is, by definition, the same as the type
[ error probability a(p). Under H,, the range of p is
p > py, which is to the right of the middle vertical
membership function. In this range, 1—~{p) = Plretain

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.1 Power curves for the tests
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Hy]=Pltype 1I error]=A(p). Thus the graph of the
rejection probability curve ~(p) of a test provides a
complete picture of the performance of the test for all
possible contingencies with regard to the true degree
state of nature.

5. Drawing conclusions from a test
In binomial proportion test, if we have a fuzzy test
with rejection region
X>n; , i=12,n (GAY)
then rejection probabilities for fuzzy test is
r(p) = P(X>mn;) (5.2)
such as power function fuzzy number

I, (), ()", (p)] (53)

in Figure 4.1.

If we have a specification probability of Chapter 2 for
the null hypothesis as

H,: P(An,s) < 0.6 (G.4)
10p—5, 0.5<p=06
—10p+7,06 < p=<0.7 -

and we denote observation value of P(A,n,s) by p
with trial 20 then X is a random variable with possible

values of 0,1,2,-+,20 of B(X;20, 0.6).

where m , (p) = {

Thus we have power function

vlpe) = PAX > clpt=1-Plx < c—1lp}
:1‘:6;0(21‘0) %(1_%)2071.

If we have the level of significance 0.05,

for 6 =1.0, we have p=1[0.6, 0.6, 0.6] as

~j) 05 0.6 0.7

15 0.021 0.126 0.416
16 0.006 0.051 0.238
17 0.001 0.016 0.107
18 0 0.004 0.035




1 -
R Tl —
0.016 ﬁ —————————————————
_,{ 1
’ 15 16 17
16.03

Figure 5.1. Test statistics for 6 = 1.0

thus we have 5, =0.037 ,
by Figure 5.1, the acceptance degree for X > 17

S, = 0.032

is

mﬂ?w(l) :A_S;Z =0.108 and the acceptance degree for

1

. Sfi
X216 is mg (1) =g = 0867,

For §=0.5, Then we have p=10.55, 0.60, 0.65) as

1

SO ol ofet HA| olEelE AY

For §=0.0, we have p=1[0.5, 0.6, 0.7] as
7) 0.5 | 0.6 0.7
15 0.021 0.126 0.416
16 0.006 0.051 0.238
17 0.001 0.016 0.107
18 0 0.004 0.035

0.55 06 0.65
16 0.019 0.051 0.118
17 0.005 0.016 0.044
13 0.001 0.004 0.012
19 0 0.001 0.002
0.98;3 \) ----------------

0.019 v 0.061 0118
0.06

Figure 5.2. Test statistics for §=10.5

thus we have § =0.034 , S,=0.033 by Figure 5.2,

the acceptance degree for X=16 is
5, _
mg (0) = fsf:D 971

thus we have S, =0.094 , §,=0.093 by Figure 5.3,
the acceptance degree for X=15 is

5
Mg (0) = 57 0.99.
1
'] ......... f‘, ............................. J—
0.095 - 5
0,006 (.05 0.081 01238

Figure 5.3. Test statistics for § =0

From the fuzzy binomial proportion test, we have a
part of the fuzzy binomial probability mass function as
Figure b.4.

Figure 5.4. Some parts of fuzzy binomial probability
mass function
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