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Abstract

We investigate the properties of fuzzy relations and ©-equivalence relation on a stsc quantale lattice . and a commutative
cqm-lattice. In particular, we find ©-equivalence relations induced by fuzzy relations.
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1. Introduction and preliminaries

Quantales were introduced by Mulvey [11,12] as the
non-commutative generalization of the lattice of open sets
in topological spaces. Recently, quantales have arisen in an
analysis of the semantics of linear logic systems developed
by Girard [4], which supports part of foundation of the-
oretic computer science. Recently, Hohle [6-8,13] devel-
oped the algebraic structures and many valued topologies
in a sense of quantales and cqm-lattices. Bélohlavek [1-3]
investigate the properties of fuzzy relations and similarities
on a restdual lattice.

In this paper, we investigate the properties of fuzzy re-
lations and -equivalence relation on a stsc-quantale lat-
tice and a commutative cgm-lattice. In particular, we find
&-equivalence relations induced by fuzzy relations.

Definition 1.1. [6-8, 11-13] A triple (L, <,®) is called
a strictly two-sided, commutative quantale (stsc-quantale,
for short) if it satisfies the following conditions:

QD) L = (L, <.V, A, 1,0) is a completely distributive
lattice where 1 is the universal upper bound and 0 denotes
the universal lower bound;

(Q2) (L, ®) is a commutative semigroup;

(Q3)a=a®1,foreacha € L;

(Q4) < is distributive over arbitrary joins, i.e.

(\/ a;) @b = \/(ai @ b).
el el

Remark 1.2. [6-8](1) A completely distributive lattice is
a stsc-quantale. In particular, the unit interval ([0,1], <
V, A, 0, 1) is a stsc-quantale.
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(2) The unit interval with a left-continuous t-norm 7,
([0,1], <, %), is a stsc-quantale.

(3) Let (L, <, ©) be a stsc-quantale. Foreach z,y ¢ L,
we define

x%y:\/{zeL\x(ngy}.

Then it satisfies Galois correspondence, that is,
(xoy) <ziffz <(y — 2).

Lemma 1.3. [6-8,13] Let (L, <, ®) be a stsc-quantale with
a strong negation x* == x — 0. Let z,y, 2, x;,y; € L for
all i € ', we have the following properties.
(HIfy <z (z2vy
z—ax <y —2a.
Qroy<azAy<zVy.
)z — (/\161 yi) =
4 (\/Ler T;) =y =
Sz — (\/7&1 yz) > el
(6) (/\Lel Ti) =Yy > vzer(al -
N(xoy) —z=z—(y—2)=y— (@2
®zo(x—y <yadr >y <(y—2z) —

)< (z®z2),r >y <z — zand

(=

®yoe

Yy — 2.
(1) (zoy) =z —y"
(IN(x—-yoly—sz<z—z
(12)z —y=1iffz <y.
(13)zr —»y=y" — "

2<z - (z0y0z)andz o (z Oy — 2) <

Definition 1.4. Let X and Y be nonempty sets.
R: X xY — Liscalled a fuzzy relation.

A map

Definition 1.5. [1-3], [6-8,13] Let X be a set. A function
R: X x X — Lis called:

(R1) reflexive if R(z,z) = 1forallz € X,
(R2) symmetric if R(z,y) = R(y,z), forall z,y € X,
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(R3) transitive if R(z,y) ® R(y, z) < R(z,z), for all
z,y,z € X.

If R satisfies (R1) and (R2), R is an (-quasi-
equivalence relation. If an ©-quasi-equivalence relation R
satisfies (R2), then R is an ®-equivalence relation.

2. Fuzzy Relations

Theorem 2.1. Let X beasetand A, B ¢ LX. We define
Ra.p, foreach x € {®, —, ., B, —} as follows:

Rawp(z,y) = A(z) * B(y).

We have the following properties.

() Raop, Ra—a,Ra 4, Ra_ 4 are transitive.

(2) Ragp» = Racp = R% 4, where R*(z,y) =
Ry, x).

(3) Raga~ is reflexive, if A < B, then R4 p and
Rp._ 4 are reflexive.

4 RA(.)A, Raga, R4 4 are symmetric.

(5) R4 4 and R 4.4 are quasi-equivalence relation.
Moreover, R 4., 4 is an equivalence relation.

O X ={zxy,...,z,}, then Ra,p = A B defined
as

A(z)
Raup = . w (B(x1)...B(xy))

A(Il)

A(xy) * B(zq) Alxy) = B(zy)

A(wn) % B(ws) o Alwn) * Blan)

Proof. (1) 1t follows from
A(z) ® B(y) ® A(y) ©® B(2) < A(z) ©® B(z)
by lemma 1.3 (11),
(Az) = A(y) © (Aly) = Al2)) < (Az) — A(2))

(Aly) — Alx)) © (Al2) — Aly)) < (A(2) — A())

(2) By Lemma 1.3 (10). Ragp-(z,y) = (A(z)* ©
B(y)™)* = Bly) — Al@) = Racplz,y) =
RsB—)A (y7 ZE)

(3) For A < B, by Lemma 1.3 (12), R4 _.g(x,x)
A(z) — B(x) = 1. Other cases are similarly proved.

(4) Since operations ©®, ¢ and < are commutative, it is
trivial.

(5) It follows from (1) and (3).

(6) It is trivial.

I
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Example 2.2. Define a binary operation & (called
Lukasiewicz conjection) on [0, 1] by

rOy=max{0,z+y—1}, z —y=min{l —z +y,1}

z®y =min{l,z+y}.

Then (]0,1],V,®,0,1) is a stsc-quantale (ref.[6-8]). Let
X = {x1,32,23} be a set and A(z;) = 0.9, A(zz) =
0.6, A(z3) = 0.8. We regard A4 as (0.9,0.6,0.8)". By The-
orem 2.1(6), we obtain

0.8 0.5 0.7 1.0 0.7 0.9
Raga=| 05 02 04 |Raa=| 1.0 1.0 1.0
07 04 06 1 08 1.0
1.0 1.0 1.0 11 1
Raca—| 07 1.0 08 |Raga=1]1 1 1
09 1.0 1.0 111
1.0 0.7 0.9
Raoa=| 07 10 08
09 08 1.0

Theorem 2.3. Let By € LX*Y and Ry € LY *Z be fuzzy
relations. The compositions of Ry and R» are defined as

RioRy(x,2) = \/ Ri(z,y) © Ra(y, 2)
yeyY

(R1 = Ro)(z,2) = N\ (Ra(z,y) — Ra(y,2))
yey

(R1 < Ry)(z,2) = \ (Ra(y, 2) = Ra(z,9))
ye€Y

(Rl =4 RQ)(ZIJ, Z) = /\ (Rl(l‘yy) — RZ(ya Z))
yey

(R ® R)(2,2) = )\ (Ra(x,y) ® Ra(y, 2))
yeY

R; (ya iE) - Rl (IZ?, y)

where x @ y = (2* © y*)*. Then we have the following
properties.
(1) (Ry o Ry)* = Rj o RS,
() (R1oRy)* =Ry = R5=Ry = R} = R] ® R3.
(3) (Ry = Ro)* = Ry < Ry = (R3)" = (R})".
(5) (R1 & Ry)® = RS & RY.

Proof (1)
(RioR2)*(z,2) = (RioRy)(z,2)
= Vyev (Bal(z,y) © Ra(y, 2))
=Vyev (B3(2,y) © Ri(y, 7))
= Rj o Ri(z,x)



(2) By Lemma 1.3 (4,7), we have

(Rio o) (2.2) = (Vyey (Rile0) © Roly,2))) =0
— /\y€V (Rl(x,y) — (Ra(y,2) — 0))

— (Ry = R})(x.7)

= (Ry = R})(x,2) = R} = R3(z. 2).

)

(Ri = Ro)*(2,2) = (Ri= Ro)(z,2)

Ay&Y(Rl(I’y) - R2(y7 Z))
/\yEY(Ri<yI) - Ri('Z?y))

= (R} < Ri)(z,x)

Ayey (R3(y,2) — Ri(z,y))
Nyey (R3)"(2.y) — (R1)"(y. x))
=((Ry)" = (R})")(z,2).

(4) It is similarly proved as in (3).
)

(R1 < R2)* = (R = Ra)° A (Ry < Ry)®
= (B3 < RY) A (R = Ry

— (R & R3).
m

Theorem 2.4. Let R € LX*X be a fuzzy relation. We
have the following properties.

(1) If R isreflexive, then RoR is reflexive, R < (RoR),
(R=R) <R (R =R) <R (R« R <Rand
(R« R*) <R.

(2) (Ro R)* = (R* ® R*). If R” is reflexive, then
R®R<R.

(3) R is symmetric iff (R = R) is reflexive iff (R <
R) is reflexive.

(4 If R is symmetric, then R o R is symmetric, (R <
R¥=R=R (R=R®=R"=R'andR< Ris
symmetric and reflexive.

(4) R is symmetric iff (R = R) is reflexive iff (R <
R) is reflexive.

) RFoR < RIf R < (R = R). Moreover,
RoR®* < Riff R < (R <« R).

(6) R is transitive iff Ro R < Riff R < (R* = R) iff
R < (R < R*). Moreover, R* is transitive iff R < RBR.

(HHER®oR* <R, thenR<R®ER.

(8) If R is an (-quasi-equivalence relation, then R =
(RoR)=(RP=Ry=(R<R)and R* =R" S R".

(9) R? o R and R o R® are symmetric.

(10) R* o R < R and R is reflexive iff R is an ©-
equivalence relation iff (R = R) and R are reflexive and
R < (R = R)iff (R « R) and R are reflexive and
R < (R < R).

(1) If R*®* o R* < R* and R* is reflexive, then
R=RODR.

(12) If R is an (&-equivalence relation, then R = (R o
R)=(R=R)=(R< R)and R = R* © R*.

The Properties of Fuzzy Relations

(13) If R is reflexive and symmetric, then R < Ris an
&-equivalence relation.
(14) Let R be reflexive and symmetric. We define

Re(zy) = \/ R'(z.y)
nEN

—_— . _
Where R* = Ro R... o R. Then R is an &-equivalence
relation.
(15) (R <> R®) and (R® < R) are ©-equivalence rela-
tions.
Proof. (1) Since R o R(x.z) > R(x,z) ® R(z,x)
R o R 1s reflexive.

(R = R)(z,7)

:]7

Nyex(R(z,y) = Rly, 2))

< (B(r, ) — R(z.2)) = R(x,2)

Other cases are similarly proved.

(2) Since R* is reflexive, by (1), R* < R o R*. Thus
ROR=(R*oR*)" <R

(3) It easily proved because

iff R(z,y) < R(y,x) (by Lemma 1.3 (12)).

(4)(RoR)* = R°oR® = RoR. (R« R)* = (R* =
R*) = (R = R).

(R& R =(R=R)°A(R<R)

=(R<R)AN(R=R)=(R< R).
(5) It easily proved because

R*(z,y) © R(y, 2) < R(z,2) ff R(y, z)

<
R(r,y) ® R (y,z) < R(x, z) iff R(x,y) <

R{y,z) — R{z, 2)
R(z,y) — Rz, z).

(6) and (7) follow from (5).

(8) It easily proved from (1) and (6).

(9) It follows from (R®oR)® = R*oRand (RoR®)® =
Ro R%.

(10) (=) Since R is reflexive, R < ¥ o R. Thus
R = R* o R. By (9), R is symmetric. Since B = R°
and R o R = R, R is transitive.

(=) Let R be an (>-equivalence relation.
(R*=R)=(R=R)=R.

(=) Let (R = R) and R be reflexive and R < (R =
R). Then R is symmetric. Thus (R < R) is reflexive and
(R+< R)=(R®*= R = R* = R.

(<) (R < R) and R are reflexiveand R < R < R.
Then R* o R = Ro R < R.

(13) (R & R)(z,2) = A.cy(R(z,2) = R(z,2))
N,cy(R(z,2) < R(z,2)) = 1.

By (8),

R(x,p) ® (R(z.p) — R(p,y)) © (R(p,y) — R(p,2))
< R(p,z)

& (R(z,p) — R(p.y)) © (R(p,y) — R(p,2))

< R(z,p) — R(p, 2)
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Similarly, R(z,p) — R(p,y)) ® (R(p,y) — B(p,x)) < T £ (Ri= Ri), B £ (By « B) (Ry = R1) < By
R(z,p) — R(p,z). Hence (R & R)(z,y) ©® (R & and R{ = Ry = R, from:
R)(y,z) < (R« R)(z,2).

(14) Suppose there exist 7,4, z € X such that s _ {10 04 _ (06 04
i ! RioRi={ gy 19 ) =B0=1 09 10

R>®(z,y) o R™(y,z) £ R™(x,2).

‘ 1.0 04 1.0 0.4
8 - r prssed
By the definition of R*(x,y), there exists z; € X such (R} = Ry) = ( 0.0 1.0 ) (Ry = FRy) ( 0.0 0.6 >

that (3) Since Ry is not reflexive Ry o Ry < Ra, Ro is tran-
Rz, )OR(x1, 22)®...0R(z, 00 (11 ). sitive and R o Ry 4 R, RgﬁRQ:%RQ,RgORS%RQ
{1 7l>C> ('11312)<-> R(l zay}OR {y,Z)%R (I’,Z) and RQ%R‘Z@RQ from:

By the definition of R*(y, z), there exists y; € X such

B 0.4 0.4 06
that R3032:<84 8§>R20R§:(0.6 o.s)
R(z,21) ® R{zy,22) ® ... © R{xp, y) ' '
OR( 1) © R(y1.12) © .. © R(yn, 2) £ B¥(2.2). g, gy = ( 009 )RQ Ry = ( 0T o )
It is a contradiction for the definition of R (., z). : K - '
(15) Let R = (ay;) and (R < R®) = (b;;) be n x n be (4) Let R € LX*¥ as follows;
matrices. 05 08 03
Since by; = Aen(@im < Gim) = 1, (R & R%) = R 0‘8 0'4 0'€
(by;) is reflexive. - 0‘3 0.6 0'9)
Since (aim i ajm) O] (ajm - akm) < (a/im had a’l«m)» ’ ' h
1t lmphes R« R = (R = R)g — R* = R*
(R & B¥)(zi,75) © (R« R ){wj, %) = biy © by 1.0 0.7 04
< Amen((@im = ajin) © (@jm — axm)) ReR=1| 06 1.0 07
= /\meN(uim ) 0.8 05 1.0
Similarly, (R & R*)(z;,z;) = (R & R*){z;,2;) < o xxX
v ’ = SYLet Re L follows;
/\meN(akm L o). Hence (R 4 Rz o (R & OVEHIEE a5 ToTiows:
Re) (g, vp) < (R < B (i, Tk). 1.0 04 09
O R=1| 04 10 01
. 1 1
Example 2.5. Define a binary operation © as same in Ex- 09 0.1 10
ample 2.2. Let R, € LX*X on X = {a, b} as follows: 1.0 04 09
po_ (L0 04, (07 08 R = (o R) = 8'3 ég ?3 )
17100 10/ 09 05 o
] ’ 1.0 0.2 07
(1) (Ry = Rp)® = (R)" = (£7)" from (ReR)=(Re Ro(ReR)=| 02 1.0 01
0.7 0.1 1.0

1.0 04 0.7 06\ (07 0.
0.0 1.0 09 05/ 09 05 (6) Let E be an identity relation and R € L**X as

0.3 0.1 0.0 1.0 0.7 0.9 0.5 07 08 1.0 05 0.5
< 04 05 ) ( 0.6 0.0 ) - ( 0.6 0.5 ) R=| 05 02 06 |(R&R)=1{ 05 1.0 02
(

09 1.0 0.3 05 02 1.0
Ry & Rs) # (Ry < Ry) from
. 1.0 0.7 04
( 0 04) <0,7 o.o):<o,5 0.6) (ReR) = 07 10 06
0.9 05 0.3 04 04 06 1.0
< 0.7 0.6 ) ( 1.0 0.4 ) ( 0.4 086 ) Let S be a reflexive and symmetric relation defined as:
0.9 05 0 1.0/ o5 o
0 0 05 05 1.0 0.7 09
(2) Since R, is reflexive Ry o Ry = Ri, Ry is tran- S=(RVRE'VE)y=| 07 10 10
sitive and (Ry = R;) < Ry. But R o Ry £ Ry, 0.9 1.0 10
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We obtain two (9-equivalence relations S < S and S°° as
follows:

1.0 0.7 0.7
0.7 1.0 08
0.7 0.8 1.0

(Se98)=

1.0 0.9 0.9
§¥=S0S5=1] 09 10 1.0
0.9 1.0 1.0

Two reflexive and symmetric refations T = (R A R*) V E
and W = (R o R*) V E induce ®-equivalence relations

1.0 05 08

—(RAR)VE=| 05 1.0 06

08 0.6 1.0
T=ToT=(T&T).

1.0 04 0.7

W=(RoR)VE=| 04 10 04

07 04 10

W=WoW = (W & W).

Definition 2.6. Let (L. ®) be a stsc-quantale. A function
T : L — L is called an equivalence transformation map if
it satisfies the following conditions:

(M) T) =

Q)ifzx <y, then T(x) <T(y),

() T(x)0T(y) <T(roy).

Theorem 2.7. Let R be an ¢-equivalence relation and T
an equivalence transformation map. Then T o R is an ©-
equivalence relation.

Proof. Since T(R(z,z)) = T(1) = 1, T o R is reflexive.

Moreover, T'(R(x y)) = T(R(y,z))and ToR is transitive

because

T(R(x,y)) o T(R(y,2)) = T(R(x,y) © Ry, z)) (by (3))
< T(R(z,2)) (by (2)).

|

Example 2.8. Define a binary operation - as same in Ex-
ample 2.2. Define 7 : [0,1] — [0,1] as T'(z) = 2. Then
T is an equivalence transformation because

(T(x)+Tly) —Hvo<T({(x+y—-1)Vv0).
Since R is an (&-equivalence relation, we obtain (-
equivalence relation 7' o R as follows:

1.0 07 05 1.00 049 0.25
R=1 07 1.0 06 }ToR=1| 049 1.00 0.36
05 06 1.0 0.25 036 1.00

The Properties of Fuzzy Relations

Theorem 2.9. (1) If R; is an ¢&-equivalence relation for
eachi € I, then A\, e Riisan (®-equivalence relation.

(2) Let R and S be (-quasi-equivalence relations.
RV S is an &-quasi-equivalence relation iff RoS C RV S
and SoRC RV S.

(3) Let R and S be G-equivalence relations. R o S is
an =-equivalence relation iff R S = So k.

Proof. (1) is easily proved.

(2) (=)
RoS(xz,z) =V, (R(z,y)©S(y,2))

V (RV S)(@,y) @ (RV S)(y,2))
(RVS)( T, 7).

IA AN

(<) We only show that R v S is transitive.
S)(a,y) o (R YV S)(y, 2

(,9) v S(2,1)) @ (R(y. ) V S(y. 2))
= (R(z.y) © R(y,2) v (S(z,y) © Rly. 2)
V(R(z,y) @ 5y, 2)) v
< R(z,2) V(S0 R)(z,
<(RVS)(x,z)

(RV
=(R
R

(3) (=) Since R o S is an &-equivalence relation,

RoS(z.z) =

(<) We only show that R o .S is transitive from:

RoS(r.y)  RoS(y. )
'\/ylex[R(l yl)OS(yl, y)]
vzleX(S(y Z1 OR(ZM )}

= \/glex \/Zlex ( T, Y1)

O'S(y,z1) © R(z1.2) })
ulex \/71@ (R x, Y1)

Sy, © Sy, 1)) © R(zl,z)D

<Vyev Veex ([Bla ) © S, z) © R(zl,z)]>

= \/ylEX V.iex (Blz.y)o

VayexS12) © Rz 2)])

= V. ex ( VyexBlz,91) © Ry, 21)] ©

= \/21€X R(l p]) 5(2’1,2’)]>
= RoS(z. z2)

S(y1,v)]
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Example 2.10. Define a binary operation & as same in Ex-
ample 2.2.

(1) Let R and § be Z-quasi-equivalence relations as
follows:

1.0 0.8 0.7 1.0 0.7 0.8
R=1 07 10 086 S=1 08 10 07
0.5 09 10 0.6 05 1.0
1.0 0.8 08
RoS 0.9 1.0 0.7
0.8 09 1.0
1.0 0.8 0.8
RVS=SoR={ 09 1.0 07

0.6 09 1.0

Since Ro S £ RV S, RV S is not an ®-quasi-equivalence
relation.
(2) Let R and S be &-equivalence relations as follows:

1.0 0.7 03 1.0 00 0.1
R=1 07 1.0 00 S=1 00 1.0 08
0.3 00 1.0 0.1 08 1.0
1.6 0.7 0.5 1.0 0.7 0.3
RoS=1 07 10 08 SoR=1{ 0.7 1.0 038
0.3 08 10 05 0.8 1.0

Since Re S # So R, Ro S is not an O-equivalence relation
because it is neither symmetric nor transitive as follows:

0.5 =RoS(x,z) # Ro S(z,x) = 0.3,
05=RoS(z,y)ORoS(y,x2) L RoS(z, z) =03

(3) Let R and S be &-equivalence relations as follows:

1.0 0.8 0.5 1.0 06 08
R=1 08 10 07 S=1 06 10 0.8
0.5 0.7 1.0 0.8 08 1.0
1.0 0.8 08 1.0 0.8 0.8
RoS =1 08 1.0 0.8 SoR=1 08 1.0 038
0.8 0.8 10 0.8 0.8 1.0

Since RoS =SeR=RVS, RoS=RVSisan
(&-equivalence relation.
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