The Properties of Fuzzy Relations

Jung Mi Ko and Yong Chan Kim

Department of Mathematics, Kangnung-Wonju National University, Gangneung, 201-702, Korea

Abstract

We investigate the properties of fuzzy relations and \odot -equivalence relation on a stsc quantale lattice L and a commutative cqm-lattice. In particular, we find \odot -equivalence relations induced by fuzzy relations.

Key words: stsc-quantales, commutative cqm-lattice, o-equivalence relations

1. Introduction and preliminaries

Quantales were introduced by Mulvey [11,12] as the non-commutative generalization of the lattice of open sets in topological spaces. Recently, quantales have arisen in an analysis of the semantics of linear logic systems developed by Girard [4], which supports part of foundation of theoretic computer science. Recently, Höhle [6-8,13] developed the algebraic structures and many valued topologies in a sense of quantales and cqm-lattices. Bělohlávek [1-3] investigate the properties of fuzzy relations and similarities on a residual lattice.

In this paper, we investigate the properties of fuzzy relations and ⊙-equivalence relation on a stsc-quantale lattice and a commutative cqm-lattice. In particular, we find ⊙-equivalence relations induced by fuzzy relations.

Definition 1.1. [6-8, 11-13] A triple (L, \leq, \odot) is called a *strictly two-sided, commutative quantale* (stsc-quantale, for short) if it satisfies the following conditions:

- (Q1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a completely distributive lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
 - (Q2) (L, \odot) is a commutative semigroup;
 - (Q3) $a = a \odot 1$, for each $a \in L$;
 - $(Q4) \odot$ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Remark 1.2. [6-8](1) A completely distributive lattice is a stsc-quantale. In particular, the unit interval $([0,1], \leq , \vee, \wedge, 0, 1)$ is a stsc-quantale.

- (2) The unit interval with a left-continuous t-norm t, $([0,1],\leq,t)$, is a stsc-quantale.
- (3) Let (L, \leq, \odot) be a stsc-quantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{z \in L \mid x \odot z \le y\}.$$

Then it satisfies Galois correspondence, that is,

$$(x \odot y) \le z \text{ iff } x \le (y \to z).$$

Lemma 1.3. [6-8,13] Let (L, \leq, \odot) be a stsc-quantale with a strong negation $x^* = x \to 0$. Let $x, y, z, x_i, y_i \in L$ for all $i \in \Gamma$, we have the following properties.

- (1) If $y \le z$, $(x \odot y) \le (x \odot z)$, $x \to y \le x \to z$ and $z \to x \le y \to x$.
 - $(2) x \odot y \le x \land y \le x \lor y.$
 - (3) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i).$
 - $(4) \left(\bigvee_{i \in \Gamma} x_i \right) \to y = \bigwedge_{i \in \Gamma} (x_i \to y).$
 - $(5) x \to (\bigvee_{i \in \Gamma} y_i) \ge \bigvee_{i \in \Gamma} (x \to y_i).$
 - (6) $(\bigwedge_{i \in \Gamma} x_i) \to y \ge \bigvee_{i \in \Gamma} (x_i \to y).$
 - $(7) (x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z).$
- (8) $x \odot (x \rightarrow y) \le y$ and $x \rightarrow y \le (y \rightarrow z) \rightarrow (x \rightarrow z)$.
- (9) $y \odot z \le x \to (x \odot y \odot z)$ and $x \odot (x \odot y \to z) \le y \to z$.
 - $(10) (x \odot y)^* = x \to y^*.$
 - (11) $(x \to y) \odot (y \to z) \le x \to z$.
 - (12) $x \rightarrow y = 1$ iff $x \le y$.
 - $(13) x \to y = y^* \to x^*.$

Definition 1.4. Let X and Y be nonempty sets. A map $R: X \times Y \to L$ is called a fuzzy relation.

Definition 1.5. [1-3], [6-8,13] Let X be a set. A function $R: X \times X \to L$ is called:

- (R1) reflexive if R(x, x) = 1 for all $x \in X$,
- (R2) symmetric if R(x,y) = R(y,x), for all $x,y \in X$,

접수일자: 2008년 12월 10일 완료일자: 2009년 4월 3일

본 논문은 2008학년도 강릉원주대학교 학술연구비 지원

에 의하여 연구되었습니다.

- (R3) transitive if $R(x,y) \odot R(y,z) \leq R(x,z)$, for all $x, y, z \in X$.
- If R satisfies (R1) and (R2), R is an \odot -quasiequivalence relation. If an \odot -quasi-equivalence relation Rsatisfies (R2), then R is an \odot -equivalence relation.

2. Fuzzy Relations

Theorem 2.1. Let X be a set and $A, B \in L^X$. We define R_{A*B} , for each $* \in \{ \odot, \rightarrow, \leftarrow, \oplus, \leftrightarrow \}$ as follows:

$$R_{A*B}(x,y) = A(x)*B(y).$$

We have the following properties.

- (1) $R_{A \odot B}$, $R_{A \rightarrow A}$, $R_{A \leftarrow A}$, $R_{A \leftrightarrow A}$ are transitive.
- (2) $R_{A \oplus B^*} = R_{A \leftarrow B} = R_{B \rightarrow A}^s$ where $R^s(x, y) =$ R(y,x).
- (3) $R_{A \oplus A^*}$ is reflexive, if $A \leq B$, then $R_{A \to B}$ and $R_{B\leftarrow A}$ are reflexive.
 - (4) $R_{A \odot A}$, $R_{A \oplus A}$, $R_{A \leftrightarrow A}$ are symmetric.
- (5) $R_{A \to A}$ and $R_{A \leftarrow A}$ are quasi-equivalence relation. Moreover, $R_{A \leftrightarrow A}$ is an equivalence relation.
- (6) If $X = \{x_1, ..., x_n\}$, then $R_{A*B} = A*B^t$ defined as

$$R_{A*B} = \begin{pmatrix} A(x_1) \\ . \\ A(x_1) \end{pmatrix} * (B(x_1)...B(x_n))$$

$$= \begin{pmatrix} A(x_1) * B(x_1) & \dots & A(x_1) * B(x_n) \\ \dots & \dots & \dots \\ A(x_n) * B(x_1) & \dots & A(x_n) * B(x_n) \end{pmatrix}$$

Proof. (1) It follows from

$$A(x) \odot B(y) \odot A(y) \odot B(z) \le A(x) \odot B(z)$$

by lemma 1.3 (11),

$$(A(x) \to A(y)) \odot (A(y) \to A(z)) \le (A(x) \to A(z))$$

$$(A(y) \rightarrow A(x)) \odot (A(z) \rightarrow A(y)) < (A(z) \rightarrow A(x))$$

- (2) By Lemma 1.3 (10). $R_{A \oplus B^*}(x,y) = (A(x)^* \odot$ $B(y)^{**})^{*} = B(y) \rightarrow A(x) = R_{A \leftarrow B}(x, y) =$ $R_{B\to A}^s(y,x)$.
- (3) For $A \leq B$, by Lemma 1.3 (12), $R_{A\to B}(x,x) =$ $A(x) \rightarrow B(x) = 1$. Other cases are similarly proved.
- (4) Since operations \odot , \oplus and \leftrightarrow are commutative, it is trivial.
 - (5) It follows from (1) and (3).
 - (6) It is trivial.

Example 2.2. Define a binary operation \odot (called Łukasiewicz conjection) on [0, 1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}$$

$$x \oplus y = \min\{1, x + y\}.$$

Then $([0,1], \vee, \odot, 0, 1)$ is a stsc-quantale (ref.[6-8]). Let $X = \{x_1, x_2, x_3\}$ be a set and $A(x_1) = 0.9, A(x_2) =$ 0.6, $A(x_3) = 0.8$. We regard A as $(0.9, 0.6, 0.8)^t$. By Theorem 2.1(6), we obtain

$$R_{A\odot A} = \begin{pmatrix} 0.8 & 0.5 & 0.7 \\ 0.5 & 0.2 & 0.4 \\ 0.7 & 0.4 & 0.6 \end{pmatrix} R_{A\rightarrow A} = \begin{pmatrix} 1.0 & 0.7 & 0.9 \\ 1.0 & 1.0 & 1.0 \\ 1 & 0.8 & 1.0 \end{pmatrix}$$

$$R_{A \leftarrow A} = \begin{pmatrix} 1.0 & 1.0 & 1.0 \\ 0.7 & 1.0 & 0.8 \\ 0.9 & 1.0 & 1.0 \end{pmatrix} R_{A \oplus A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$R_{A \leftrightarrow A} = \left(\begin{array}{ccc} 1.0 & 0.7 & 0.9 \\ 0.7 & 1.0 & 0.8 \\ 0.9 & 0.8 & 1.0 \end{array}\right)$$

Theorem 2.3. Let $R_1 \in L^{X \times Y}$ and $R_2 \in L^{Y \times Z}$ be fuzzy relations. The compositions of R_1 and R_2 are defined as

$$R_1 \circ R_2(x,z) = \bigvee_{y \in Y} R_1(x,y) \odot R_2(y,z)$$

$$(R_1 \Rightarrow R_2)(x,z) = igwedge_{y \in Y} (R_1(x,y)
ightarrow R_2(y,z))$$

$$(R_1 \Leftarrow R_2)(x,z) = \bigwedge_{y \in Y} (R_2(y,z) \to R_1(x,y))$$

$$(R_1 \Leftrightarrow R_2)(x,z) = \bigwedge_{y \in Y} (R_1(x,y) \leftrightarrow R_2(y,z))$$

$$(R_1\oplus R_2)(x,z)=igwedge_{y\in Y}(R_1(x,y)\oplus R_2(y,z))$$

$$R_1^s(y,x) = R_1(x,y)$$

where $x \oplus y = (x^* \odot y^*)^*$. Then we have the following properties.

- $(1) (R_1 \circ R_2)^s = R_2^s \circ R_1^s.$
- (2) $(R_1 \circ R_2)^* = R_1 \Rightarrow R_2^* = R_2 \Rightarrow R_1^* = R_1^* \oplus R_2^*.$ (3) $(R_1 \Rightarrow R_2)^s = R_2^s \Leftarrow R_1^s = (R_2^s)^* \Rightarrow (R_1^s)^*.$
- $(4) (R_1 \Leftarrow R_2)^s = R_2^s \Rightarrow R_1^s.$ $(5) (R_1 \Leftrightarrow R_2)^s = R_2^s \Leftrightarrow R_1^s.$

Proof. (1)

$$\begin{array}{ll} (R_1 \circ R_2)^s(z,x) &= (R_1 \circ R_2)(x,z) \\ &= \bigvee_{y \in V} (R_1(x,y) \odot R_2(y,z)) \\ &= \bigvee_{y \in V} (R_2^s(z,y) \odot R_1^s(y,x)) \\ &= R_2^s \circ R_1^s(z,x). \end{array}$$

(2) By Lemma 1.3 (4,7), we have

$$(R_{1} \circ R_{2})^{*}(x,z) = \left(\bigvee_{y \in V} (R_{1}(x,y) \odot R_{2}(y,z))\right) \to 0$$

$$= \bigwedge_{y \in V} \left(R_{1}(x,y) \to (R_{2}(y,z) \to 0)\right)$$

$$= (R_{1} \Rightarrow R_{2}^{*})(x,z)$$

$$= (R_{2} \Rightarrow R_{1}^{*})(x,z) = R_{1}^{*} \oplus R_{2}^{*}(x,z).$$

(3)

$$\begin{array}{ll} (R_1 \Rightarrow R_2)^s(z,x) &= (R_1 \Rightarrow R_2)(x,z) \\ &= \bigwedge_{y \in Y} (R_1(x,y) \to R_2(y,z)) \\ &= \bigwedge_{y \in Y} (R_1^s(y,x) \to R_2^s(z,y)) \\ &= (R_2^s \Leftarrow R_1^s)(z,x) \\ &= \bigwedge_{y \in Y} (R_2^*(y,z) \to R_1^*(x,y)) \\ &= \bigwedge_{y \in Y} ((R_2^s)^*(z,y) \to (R_1^s)^*(y,x)) \\ &= ((R_2^s)^* \Rightarrow (R_1^s)^*)(z,x). \end{array}$$

(4) It is similarly proved as in (3).

(5)

$$(R_1 \Leftrightarrow R_2)^s = (R_1 \Rightarrow R_2)^s \wedge (R_1 \Leftarrow R_2)^s$$

= $(R_2^s \Leftarrow R_1^s) \wedge (R_2^s \Rightarrow R_1^s)$
= $(R_2^s \Leftrightarrow R_1^s)$.

Theorem 2.4. Let $R \in L^{X \times X}$ be a fuzzy relation. We have the following properties.

- (1) If R is reflexive, then $R \circ R$ is reflexive, $R \leq (R \circ R)$, $(R \Rightarrow R) \leq R$, $(R^s \Rightarrow R) \leq R$, $(R \Leftarrow R) \leq R$ and $(R \Leftarrow R^s) \leq R$.
- (2) $(R \circ R)^* = (R^* \oplus R^*)$. If R^* is reflexive, then $R \oplus R \leq R$.
- (3) R is symmetric iff $(R \Rightarrow R)$ is reflexive iff $(R \Leftarrow R)$ is reflexive.
- (4) If R is symmetric, then $R \circ R$ is symmetric, $(R \Leftarrow R)^s = R \Rightarrow R$, $(R \Rightarrow R)^s = R^* \Rightarrow R^*$ and $R \Leftrightarrow R$ is symmetric and reflexive.
- (4) R is symmetric iff $(R \Rightarrow R)$ is reflexive iff $(R \Leftarrow R)$ is reflexive.
- (5) $R^s \circ R \leq R$ iff $R \leq (R \Rightarrow R)$. Moreover, $R \circ R^s \leq R$ iff $R \leq (R \Leftarrow R)$.
- (6) R is transitive iff $R \circ R \leq R$ iff $R \leq (R^s \Rightarrow R)$ iff $R \leq (R \Leftarrow R^s)$. Moreover, R^* is transitive iff $R \leq R \oplus R$. (7) If $R^{*s} \circ R^* \leq R^*$, then $R \leq R \oplus R$.
- (8) If R is an \odot -quasi-equivalence relation, then $R = (R \circ R) = (R^s \Rightarrow R) = (R \Leftarrow R^s)$ and $R^* = R^* \oplus R^*$.
 - (9) $R^s \circ R$ and $R \circ R^s$ are symmetric.
- (10) $R^s \circ R \leq R$ and R is reflexive iff R is an \odot -equivalence relation iff $(R \Rightarrow R)$ and R are reflexive and $R \leq (R \Rightarrow R)$ iff $(R \Leftarrow R)$ and R are reflexive and $R \leq (R \Leftarrow R)$.
- (11) If $R^{*s} \circ R^* \leq R^*$ and R^* is reflexive, then $R = R \oplus R$.
- (12) If R is an \odot -equivalence relation, then $R=(R\circ R)=(R\Rightarrow R)=(R\Leftarrow R)$ and $R^*=R^*\oplus R^*.$

- (13) If R is reflexive and symmetric, then $R \Leftrightarrow R$ is an \odot -equivalence relation.
 - (14) Let R be reflexive and symmetric. We define

$$R^{\infty}(x,y) = \bigvee_{n \in N} R^n(x,y)$$

Where $R^n = \overbrace{R \circ R ... \circ R}^n$. Then R^{∞} is an \odot -equivalence relation.

(15) $(R \Leftrightarrow R^s)$ and $(R^s \Leftrightarrow R)$ are \odot -equivalence relations.

Proof. (1) Since $R \circ R(x,x) \ge R(x,x) \odot R(x,x) = 1$, $R \circ R$ is reflexive.

$$\begin{array}{ll} (R \Rightarrow R)(x,z) &= \bigwedge_{y \in X} (R(x,y) \to R(y,z)) \\ &\leq (R(x,x) \to R(x,z)) = R(x,z) \end{array}$$

Other cases are similarly proved.

- (2) Since R^* is reflexive, by (1), $R^* \leq R^* \circ R^*$. Thus $R \odot R = (R^* \circ R^*)^* \leq R$.
 - (3) It easily proved because

$$(R \Rightarrow R)(x,x) = \bigwedge_{y \in X} (R(x,y) \to R(y,x)) = 1$$
 iff $R(x,y) \leq R(y,x)$ (by Lemma 1.3 (12)).

(4) $(R \circ R)^s = R^s \circ R^s = R \circ R$. $(R \Leftarrow R)^s = (R^s \Rightarrow R^s) = (R \Rightarrow R)$.

$$(R \Leftrightarrow R)^s = (R \Rightarrow R)^s \wedge (R \Leftarrow R)^s = (R \Leftarrow R) \wedge (R \Rightarrow R) = (R \Leftrightarrow R).$$

(5) It easily proved because

$$\begin{array}{l} R^s(x,y)\odot R(y,z) \leq R(x,z) \text{ iff } R(y,z) \leq R(y,x) \rightarrow R(x,z) \\ R(x,y)\odot R^s(y,z) \leq R(x,z) \text{ iff } R(x,y) \leq R(z,y) \rightarrow R(x,z). \end{array}$$

- (6) and (7) follow from (5).
- (8) It easily proved from (1) and (6).
- (9) It follows from $(R^s \circ R)^s = R^s \circ R$ and $(R \circ R^s)^s = R \circ R^s$.
- (10) (\Rightarrow) Since R is reflexive, $R \leq R^s \circ R$. Thus $R = R^s \circ R$. By (9), R is symmetric. Since $R = R^s$ and $R \circ R = R$, R is transitive.
- (\Rightarrow) Let R be an \odot -equivalence relation. By (8), $(R^s\Rightarrow R)=(R\Rightarrow R)=R.$
- (\Rightarrow) Let $(R \Rightarrow R)$ and R be reflexive and $R \leq (R \Rightarrow R)$. Then R is symmetric. Thus $(R \Leftarrow R)$ is reflexive and $(R \Leftarrow R) = (R^s \Rightarrow R^s)^s = R^s = R$.

 (\Leftarrow) $(R \Leftarrow R)$ and R are reflexive and $R \leq R \Leftarrow R$. Then $R^s \circ R = R \circ R^s \leq R$.

(13) $(R \Leftrightarrow R)(x,x) = \bigwedge_{z \in U} (R(x,z) \leftrightarrow R(z,x)) = \bigwedge_{z \in U} (R(x,z) \leftrightarrow R(x,z)) = 1.$

$$R(x,p) \odot (R(x,p) \to R(p,y)) \odot (R(p,y) \to R(p,z))$$

$$\leq R(p,z)$$

$$\Leftrightarrow (R(x,p) \to R(p,y)) \odot (R(p,y) \to R(p,z))$$

$$\leq R(x,p) \to R(p,z)$$

Similarly, $R(z, p) \to R(p, y) \odot (R(p, y) \to R(p, x)) \le$ $R(z,p) \rightarrow R(p,x)$. Hence $(R \Leftrightarrow R)(x,y) \odot (R \Leftrightarrow$ $R(y,z) \le (R \Leftrightarrow R)(x,z).$

(14) Suppose there exist $x, y, z \in X$ such that

$$R^{\infty}(x,y) \circ R^{\infty}(y,z) \nleq R^{\infty}(x,z).$$

By the definition of $R^{\infty}(x,y)$, there exists $x_i \in X$ such

$$R(x,x_1) \odot R(x_1,x_2) \odot ... \odot R(x_n,y) \circ R^{\infty}(y,z) \nleq R^{\infty}(x,z).$$

By the definition of $R^{\infty}(y,z)$, there exists $y_i \in X$ such that

$$R(x, x_1) \odot R(x_1, x_2) \odot ... \odot R(x_n, y)$$

$$\odot R(y, y_1) \odot R(y_1, y_2) \odot ... \odot R(y_n, z) \not\leq R^{\infty}(x, z).$$

It is a contradiction for the definition of $R^{\infty}(x,z)$.

(15) Let $R = (a_{ij})$ and $(R \Leftrightarrow R^s) = (b_{ij})$ be $n \times n$ be

Since $b_{ii} = \bigwedge_{m \in N} (a_{im} \leftrightarrow a_{im}) = 1, (R \Leftrightarrow R^s) =$ (b_{ij}) is reflexive.

Since $(a_{im} \rightarrow a_{jm}) \odot (a_{jm} \rightarrow a_{km}) \leq (a_{im} \rightarrow a_{km})$, it implies

$$(R \Leftrightarrow R^s)(x_i, x_j) \odot (R \Leftrightarrow R^s)(x_j, x_k) = b_{ij} \odot b_{jk}$$

$$\leq \bigwedge_{m \in N} ((a_{im} \to a_{jm}) \odot (a_{jm} \to a_{km}))$$

$$\leq \bigwedge_{m \in N} (a_{im} \to a_{km})$$

Similarly, $(R \Leftrightarrow R^s)(x_i, x_j) \odot (R \Leftrightarrow R^s)(x_i, x_k) \le$ $\bigwedge_{m\in N}(a_{km}\to a_{im})$. Hence $(R\Leftrightarrow R^s)(x_i,x_i)\odot (R\Leftrightarrow R^s)$ $R^s(x_j, x_k) \le (R \Leftrightarrow R^s)(x_i, x_k).$

Example 2.5. Define a binary operation ⊙ as same in Example 2.2. Let $R_i \in L^{X \times X}$ on $X = \{a, b\}$ as follows:

$$R_1 = \begin{pmatrix} 1.0 & 0.4 \\ 0.0 & 1.0 \end{pmatrix} R_2 = \begin{pmatrix} 0.7 & 0.6 \\ 0.9 & 0.5 \end{pmatrix}$$

(1)
$$(R_1 \Rightarrow R_2)^s = (R_2^s)^* \Rightarrow (R_1^s)^*$$
 from

$$\left(\begin{array}{cc} 1.0 & 0.4 \\ 0.0 & 1.0 \end{array}\right) \Rightarrow \left(\begin{array}{cc} 0.7 & 0.6 \\ 0.9 & 0.5 \end{array}\right) = \left(\begin{array}{cc} 0.7 & 0.6 \\ 0.9 & 0.5 \end{array}\right)$$

$$\begin{pmatrix} 0.3 & 0.1 \\ 0.4 & 0.5 \end{pmatrix} \Rightarrow \begin{pmatrix} 0.0 & 1.0 \\ 0.6 & 0.0 \end{pmatrix} = \begin{pmatrix} 0.7 & 0.9 \\ 0.6 & 0.5 \end{pmatrix}$$

 $(R_1 \Leftrightarrow R_2) \neq (R_2 \Leftrightarrow R_1)$ from

$$\left(\begin{array}{cc} 1.0 & 0.4 \\ 0.0 & 1.0 \end{array}\right) \Leftrightarrow \left(\begin{array}{cc} 0.7 & 0.6 \\ 0.9 & 0.5 \end{array}\right) = \left(\begin{array}{cc} 0.5 & 0.6 \\ 0.3 & 0.4 \end{array}\right)$$

$$\left(\begin{array}{cc} 0.7 & 0.6 \\ 0.9 & 0.5 \end{array}\right) \Leftrightarrow \left(\begin{array}{cc} 1.0 & 0.4 \\ 0.0 & 1.0 \end{array}\right) = \left(\begin{array}{cc} 0.4 & 0.6 \\ 0.5 & 0.5 \end{array}\right)$$

(2) Since R_1 is reflexive $R_1 \circ R_1 = R_1$, R_1 is transitive and $(R_1 \Rightarrow R_1) \leq R_1$. But $R_1^s \circ R_1 \not\leq R_1$, $R_1 \not< (R_1 \Rightarrow R_1), R_1 \not\le (R_1 \Leftarrow R_1), (R_1 \Leftarrow R_1) \le R_1$ and $R_1^s \Rightarrow R_1 = R_1$ from:

$$R_1^s \circ R_1 = \begin{pmatrix} 1.0 & 0.4 \\ 0.4 & 1.0 \end{pmatrix} (R_1 \Rightarrow R_1) = \begin{pmatrix} 0.6 & 0.4 \\ 0.0 & 1.0 \end{pmatrix}$$

$$(R_1^s \Rightarrow R_1) = \begin{pmatrix} 1.0 & 0.4 \\ 0.0 & 1.0 \end{pmatrix} (R_1 \Leftarrow R_1) = \begin{pmatrix} 1.0 & 0.4 \\ 0.0 & 0.6 \end{pmatrix}$$

(3) Since R_2 is not reflexive $R_2 \circ R_2 \leq R_2$, R_2 is transitive and $R_2^s \circ R_2 \not \leq R_2$, $R_2 \not \leq R_2 \Rightarrow R_2$, $R_2 \circ R_2^s \not \leq R_2$ and $R_2 \not \leq R_2 \Leftarrow R_2$ from:

$$R_2^s \circ R_2 = \left(egin{array}{cc} 0.8 & 0.4 \\ 0.4 & 0.2 \end{array}
ight) R_2 \circ R_2^s = \left(egin{array}{cc} 0.4 & 0.6 \\ 0.6 & 0.8 \end{array}
ight)$$

$$R_2 \Rightarrow R_2 = \begin{pmatrix} 1.0 & 0.9 \\ 0.6 & 0.7 \end{pmatrix} R_2 \Leftarrow R_2 = \begin{pmatrix} 0.7 & 1.0 \\ 0.6 & 1.0 \end{pmatrix}$$

(4) Let $R \in L^{X \times X}$ as follows:

$$R = \left(\begin{array}{ccc} 0.5 & 0.8 & 0.3\\ 0.8 & 0.4 & 0.6\\ 0.3 & 0.6 & 0.9 \end{array}\right)$$

$$R \Leftarrow R = (R \Rightarrow R)^s = R^* \Rightarrow R^*$$

$$R \Leftarrow R = \left(\begin{array}{ccc} 1.0 & 0.7 & 0.4 \\ 0.6 & 1.0 & 0.7 \\ 0.8 & 0.5 & 1.0 \end{array}\right)$$

(5) Let $R \in L^{X \times X}$ as follows;

$$R = \left(\begin{array}{ccc} 1.0 & 0.4 & 0.9 \\ 0.4 & 1.0 & 0.1 \\ 0.9 & 0.1 & 1.0 \end{array}\right)$$

$$R^{\infty} = (R \circ R) = \begin{pmatrix} 1.0 & 0.4 & 0.9 \\ 0.4 & 1.0 & 0.3 \\ 0.9 & 0.3 & 1.0 \end{pmatrix}$$

$$(R\Leftrightarrow R)=(R\Leftrightarrow R)\circ(R\Leftrightarrow R)=\left(egin{array}{ccc} 1.0 & 0.2 & 0.7 \\ 0.2 & 1.0 & 0.1 \\ 0.7 & 0.1 & 1.0 \end{array}
ight)$$

(6) Let E be an identity relation and $R \in L^{X \times X}$ as

$$\begin{pmatrix} 0.3 & 0.1 \\ 0.4 & 0.5 \end{pmatrix} \Rightarrow \begin{pmatrix} 0.0 & 1.0 \\ 0.6 & 0.0 \end{pmatrix} = \begin{pmatrix} 0.7 & 0.9 \\ 0.6 & 0.5 \end{pmatrix} \qquad R = \begin{pmatrix} 0.5 & 0.7 & 0.8 \\ 0.5 & 0.2 & 0.6 \\ 0.9 & 1.0 & 0.3 \end{pmatrix} (R \Leftrightarrow R^s) = \begin{pmatrix} 1.0 & 0.5 & 0.5 \\ 0.5 & 1.0 & 0.2 \\ 0.5 & 0.2 & 1.0 \end{pmatrix}$$

$$(R^s \Leftrightarrow R) = \begin{pmatrix} 1.0 & 0.7 & 0.4 \\ 0.7 & 1.0 & 0.6 \\ 0.4 & 0.6 & 1.0 \end{pmatrix}$$

Let S be a reflexive and symmetric relation defined as:

$$S = (R \lor R^s \lor E) = \left(\begin{array}{ccc} 1.0 & 0.7 & 0.9 \\ 0.7 & 1.0 & 1.0 \\ 0.9 & 1.0 & 1.0 \end{array}\right)$$

We obtain two \odot -equivalence relations $S \Leftrightarrow S$ and S^{∞} as follows:

$$(S \Leftrightarrow S) = \left(\begin{array}{ccc} 1.0 & 0.7 & 0.7 \\ 0.7 & 1.0 & 0.8 \\ 0.7 & 0.8 & 1.0 \end{array}\right)$$

$$S^{\infty} = S \circ S = \begin{pmatrix} 1.0 & 0.9 & 0.9 \\ 0.9 & 1.0 & 1.0 \\ 0.9 & 1.0 & 1.0 \end{pmatrix}$$

Two reflexive and symmetric relations $T = (R \wedge R^s) \vee E$ and $W = (R \circ R^s) \vee E$ induce \odot -equivalence relations

$$T = (R \wedge R^s) \vee E = \begin{pmatrix} 1.0 & 0.5 & 0.8 \\ 0.5 & 1.0 & 0.6 \\ 0.8 & 0.6 & 1.0 \end{pmatrix}$$

$$T = T \circ T = (T \Leftrightarrow T).$$

$$W = (R \circ R^s) \lor E = \left(egin{array}{ccc} 1.0 & 0.4 & 0.7 \ 0.4 & 1.0 & 0.4 \ 0.7 & 0.4 & 1.0 \end{array}
ight)$$

$$W=W\circ W=(W\Leftrightarrow W).$$

Definition 2.6. Let (L, \odot) be a stsc-quantale. A function $T: L \to L$ is called an equivalence transformation map if it satisfies the following conditions:

- (1) T(1) = 1,
- (2) if $x \le y$, then $T(x) \le T(y)$,
- (3) $T(x) \odot T(y) \le T(x \odot y)$.

Theorem 2.7. Let R be an \odot -equivalence relation and T an equivalence transformation map. Then $T \circ R$ is an \odot -equivalence relation.

Proof. Since T(R(x,x)) = T(1) = 1, $T \circ R$ is reflexive. Moreover, T(R(x,y)) = T(R(y,x)) and $T \circ R$ is transitive because

$$T(R(x,y)) \circ T(R(y,z)) = T(R(x,y) \odot R(y,z)) \text{ (by (3))}$$

$$\leq T(R(x,z)) \text{ (by (2))}.$$

Example 2.8. Define a binary operation \odot as same in Example 2.2. Define $T:[0,1]\to [0,1]$ as $T(x)=x^2$. Then T is an equivalence transformation because

$$(T(x) + T(y) - 1) \lor 0 \le T((x + y - 1) \lor 0).$$

Since R is an \odot -equivalence relation, we obtain \odot -equivalence relation $T \circ R$ as follows:

$$R = \begin{pmatrix} 1.0 & 0.7 & 0.5 \\ 0.7 & 1.0 & 0.6 \\ 0.5 & 0.6 & 1.0 \end{pmatrix} T \circ R = \begin{pmatrix} 1.00 & 0.49 & 0.25 \\ 0.49 & 1.00 & 0.36 \\ 0.25 & 0.36 & 1.00 \end{pmatrix}$$

Theorem 2.9. (1) If R_i is an \odot -equivalence relation for each $i \in I$, then $\bigwedge_{i \in I} R_i$ is an \odot -equivalence relation.

- (2) Let R and S be \odot -quasi-equivalence relations. $R \vee S$ is an \odot -quasi-equivalence relation iff $R \circ S \subset R \vee S$ and $S \circ R \subset R \vee S$.
- (3) Let R and S be \odot -equivalence relations. $R \circ S$ is an \odot -equivalence relation iff $R \circ S = S \circ R$.

Proof. (1) is easily proved.

 $(2) (\Rightarrow)$

$$\begin{array}{ll} R\circ S(x,z) &= \bigvee_y (R(x,y)\odot S(y,z)) \\ &\leq \bigvee_y ((R\vee S)(x,y)\odot (R\vee S)(y,z)) \\ &< (R\vee S)(x,z). \end{array}$$

 (\Leftarrow) We only show that $R \vee S$ is transitive.

$$\begin{split} &(R \vee S)(x,y) \odot (R \vee S)(y,z) \\ &= (R(x,y) \vee S(x,y)) \odot (R(y,z) \vee S(y,z)) \\ &= (R(x,y) \odot R(y,z) \vee (S(x,y) \odot R(y,z)) \\ &\vee (R(x,y) \odot S(y,z)) \vee (S(x,y) \odot S(y,z)) \\ &\leq R(x,z) \vee (S \circ R)(x,z) \vee (R \circ S)(x,z) \vee S(x,z) \\ &\leq (R \vee S)(x,z) \end{split}$$

(3) (\Rightarrow) Since $R \circ S$ is an \odot -equivalence relation,

$$\begin{array}{ll} R \circ S(x,z) &= R \circ S(z,x) \\ &= \bigvee_{y \in X} (R(z,y) \odot S(y,x)) \\ &= \bigvee_{y \in X} (R(y,z) \odot S(x,y)) \\ &= S \circ R(x,z) \end{array}$$

 (\Leftarrow) We only show that $R \circ S$ is transitive from:

$$\begin{split} R \circ S(x,y) \odot R \circ S(y,z) \\ &= \bigvee_{y_1 \in X} [R(x,y_1) \odot S(y_1,y)] \\ \odot \bigvee_{z_1 \in X} [S(y,z_1) \odot R(z_1,z)] \\ &= \bigvee_{y_1 \in X} \bigvee_{z_1 \in X} \left([R(x,y_1) \odot S(y_1,y)] \right. \\ \left. \odot [S(y,z_1) \odot R(z_1,z)] \right) \\ &= \bigvee_{y_1 \in X} \bigvee_{z_1 \in X} \left([R(x,y_1) \odot R(z_1,z)] \right) \\ &= \bigvee_{y_1 \in X} \bigvee_{z_1 \in X} \left([R(x,y_1) \odot R(z_1,z)] \right) \\ &\leq \bigvee_{y_1 \in X} \bigvee_{z_1 \in X} \left([R(x,y_1) \odot S(y_1,z_1) \odot R(z_1,z)] \right) \\ &= \bigvee_{y_1 \in X} \bigvee_{z_1 \in X} \left(R(x,y_1) \odot R(z_1,z) \right] \right) \\ &= \bigvee_{z_1 \in X} \left(\bigvee_{y_1 \in X} [R(x,y_1) \odot R(y_1,z_1)] \odot S(z_1,z) \right] \right) \\ &= \bigvee_{z_1 \in X} \left(R(x,z_1) \odot R(z_1,z) \right] \\ &= \bigvee_{z_1 \in X} \left(R(x,z_1) \odot S(z_1,z) \right] \right) \\ &= R \circ S(x,z) \end{split}$$

Example 2.10. Define a binary operation \odot as same in Example 2.2.

(1) Let R and S be \odot -quasi-equivalence relations as follows:

$$R = \begin{pmatrix} 1.0 & 0.8 & 0.7 \\ 0.7 & 1.0 & 0.6 \\ 0.5 & 0.9 & 1.0 \end{pmatrix} \quad S = \begin{pmatrix} 1.0 & 0.7 & 0.8 \\ 0.9 & 1.0 & 0.7 \\ 0.6 & 0.5 & 1.0 \end{pmatrix}$$

$$R \circ S = \begin{pmatrix} 1.0 & 0.8 & 0.8 \\ 0.9 & 1.0 & 0.7 \\ 0.8 & 0.9 & 1.0 \end{pmatrix}$$

$$R \lor S = S \circ R = \begin{pmatrix} 1.0 & 0.8 & 0.8 \\ 0.9 & 1.0 & 0.7 \\ 0.6 & 0.9 & 1.0 \end{pmatrix}$$

Since $R \circ S \not \leq R \vee S$, $R \vee S$ is not an \odot -quasi-equivalence relation.

(2) Let R and S be \odot -equivalence relations as follows:

$$R = \begin{pmatrix} 1.0 & 0.7 & 0.3 \\ 0.7 & 1.0 & 0.0 \\ 0.3 & 0.0 & 1.0 \end{pmatrix} \quad S = \begin{pmatrix} 1.0 & 0.0 & 0.1 \\ 0.0 & 1.0 & 0.8 \\ 0.1 & 0.8 & 1.0 \end{pmatrix}$$

$$R \circ S = \left(\begin{array}{ccc} 1.0 & 0.7 & 0.5 \\ 0.7 & 1.0 & 0.8 \\ 0.3 & 0.8 & 1.0 \end{array}\right) \quad S \circ R = \left(\begin{array}{ccc} 1.0 & 0.7 & 0.3 \\ 0.7 & 1.0 & 0.8 \\ 0.5 & 0.8 & 1.0 \end{array}\right)$$

Since $R \circ S \neq S \circ R$, $R \circ S$ is not an \odot -equivalence relation because it is neither symmetric nor transitive as follows:

$$0.5 = R \circ S(x, z) \neq R \circ S(z, x) = 0.3.$$

$$0.5 = R \circ S(z, y) \odot R \circ S(y, x) \not\leq R \circ S(z, x) = 0.3.$$

(3) Let R and S be \odot -equivalence relations as follows:

$$R = \begin{pmatrix} 1.0 & 0.8 & 0.5 \\ 0.8 & 1.0 & 0.7 \\ 0.5 & 0.7 & 1.0 \end{pmatrix} \quad S = \begin{pmatrix} 1.0 & 0.6 & 0.8 \\ 0.6 & 1.0 & 0.8 \\ 0.8 & 0.8 & 1.0 \end{pmatrix}$$

$$R \circ S = \left(\begin{array}{ccc} 1.0 & 0.8 & 0.8 \\ 0.8 & 1.0 & 0.8 \\ 0.8 & 0.8 & 1.0 \end{array}\right) \quad S \circ R = \left(\begin{array}{ccc} 1.0 & 0.8 & 0.8 \\ 0.8 & 1.0 & 0.8 \\ 0.8 & 0.8 & 1.0 \end{array}\right)$$

Since $R \circ S = S \circ R = R \vee S$, $R \circ S = R \vee S$ is an \odot -equivalence relation.

References

- [1] R. Bělohlávek, *Similarity relations in concept lattices*, J. Logic and Computation 10 (6) (2000) 823-845.
- [2] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log. 41 (2002) 83-90.
- [3] R. Bělohlávek, *Similarity relations and BK-relational products*, Information Sciences 126 (2000) 287-295.
- [4] J.Y. Girard, *Linear logic*, Theoret. Comp. Sci. 50, 1987, 1-102.

- [5] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).
- [6] U. Höhle, Many valued topology and its applications , Kluwer Academic Publisher, Boston, (2001).
- [7] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [8] U. Höhle, S. E. Rodabaugh, *Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory,* The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- [9] J. Jacas, J. Recasens, Fuzzy T-transitive relations: eigenvectors and generators, Fuzzy Sets and Systems 72 (1995) 147-154.
- [10] Liu Ying-Ming, *Projective and injective objects in the category of quantales*, J. of Pure and Applied Algebra, 176, 2002, 249-258.
- [11] C.J. Mulvey, Quantales, Suppl. Rend. Cric. Mat. Palermo Ser.II 12,1986,99-104.
- [12] C.J. Mulvey, J.W. Pelletier, On the quantisation of point, J. of Pure and Applied Algebra, 159, 2001, 231-295.
- [13] S. E. Rodabaugh, E. P. Klement, Toplogical And Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- [14] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.

저 자 소 개

Jung Mi Ko

She received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1983 and 1988, respectively. From 1988 to present, she is a professor in Department of Mathematics, Kangnung University. Her research interests are fuzzy logic.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.