DOI QR코드

DOI QR Code

Malaria Diagnosis: A Brief Review

  • Tangpukdee, Noppadon (Critical Care Research Unit, Department of Clinical Tropical Medicine, Mahidol University) ;
  • Duangdee, Chatnapa (Diagnostic Laboratory Unit, Hospital for Tropical Diseases, Mahidol University) ;
  • Wilairatana, Polrat (Critical Care Research Unit, Department of Clinical Tropical Medicine, Mahidol University) ;
  • Krudsood, Srivicha (Critical Care Research Unit, Department of Clinical Tropical Medicine, Mahidol University)
  • 발행 : 2009.06.30

초록

Malaria is a major cause of death in tropical and sub-tropical countries, killing each year over 1 million people globally; 90% of fatalities occur in African children. Although effective ways to manage malaria now exist, the number of malaria cases is still increasing, due to several factors. In this emergency situation, prompt and effective diagnostic methods are essential for the management and control of malaria. Traditional methods for diagnosing malaria remain problematic; therefore, new technologies have been developed and introduced to overcome the limitations. This review details the currently available diagnostic methods for malaria.

키워드

참고문헌

  1. MMV website. Curing malaria together. [Accessed October 16, 2008]. Available at: http://www.mmv.org
  2. Pasvol G. Management of severe malaria: interventions and controversies. Infect Dis Clin North Am 2005; 19: 211-240 https://doi.org/10.1016/j.idc.2004.10.007
  3. World Health Organization. Guidelines for the treatment of malaria. 1st ed. Geneva, Switzerland. WHO. 2006, p 133-143
  4. Bell DR, Jorgensen P, Christophel EM, Palmer KL. Malaria risk: estimation of the malaria burden. Nature 2005; 437: E3-E4 https://doi.org/10.1038/nature04179
  5. Reyburn H, Mbakilwa H, Mwangi R, Mwerinde O, Olomi R, Drakeley C, Whitty CJ. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial. BMJ 2007; 334: 403 https://doi.org/10.1136/bmj.39073.496829.AE
  6. CDC website. Malaria Facts. [Accessed October 10, 2008]. Available at: http://www.cdc.gov/malaria/facts.htm
  7. Looareesuwan S. Malaria. In: Looareesuwan S, Wilairatana P eds, Clinical Tropical Medicine. 1st ed. Bangkok, Thailand. Medical Media. 1999, p 5-10
  8. Mwangi TW, Mohammed M, Dayo H, Snow RW, Marsh K. Clinical algorithms for malaria diagnosis lack utility among people of different age groups. Trop Med Int Health 2005; 10: 530-536 https://doi.org/10.1111/j.1365-3156.2005.01439.x
  9. Reyburn H, Mbatia R, Drakeley C, Carneiro I, Mwakasungula E, Mwerinde O, Saganda K, Shao J, Kitua A, Olomi R, Greenwood BM, Whitty CJ. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ 2004; 329: 1212 https://doi.org/10.1136/bmj.38251.658229.55
  10. McMorrow ML, Masanja MI, Abdulla SM, Kahigwa E, Kachur SP. Challenges in routine implementation and quality control of rapid diagnostic tests for malaria-Rufiji District, Tanzania. Am J Trop Med Hyg 2008; 79: 385-390
  11. Perkins BA, Zucker JR, Otieno J. Jafari HS, Paxton L, Redd SC, Nahlen BL, Schwartz B, Oloo AJ, Olargo C, Gove S, Campbell CC. Evaluation of an algorithm for integrated management of childhood illness in an area of Kenya with high malaria transmission. Bull World Health Organ 1997; 75: 33-42
  12. Weber MW, Mulholland EK, Jaffar S, Troedsson H, Gove S, Greenwood BM. Evaluation of an algorithm for the integrated management of childhood illness in an area with seasonal malaria in the Gambia. Bull World Health Organ 1997; 75: 25-32
  13. Tarimo DS, Minjas JN, Bygbjerg IC. Malaria diagnosis and treatment under the strategy of the integrated management of children illness (IMCI): relevance of laboratory support from the rapid immunochromatographic tests of ICT malaria P.f/P.v and OptiMAL. Ann Trop Med Parasitol 2001; 95: 437-444 https://doi.org/10.1080/13648590120068971
  14. Kyabayinze DJ, Tibenderana JK, Odong GW, Rwakimari JB, Counihan H. Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda. Malar J 2008; 7: 221 https://doi.org/10.1186/1475-2875-7-221
  15. Bhandari PL, Raghuveer CV, Rajeev A, Bhandari PD. Comparative study of peripheral blood smear, quantitative buffy coat and modified centrifuged blood smear in malaria diagnosis. Indian J Pathol Microbiol 2008; 51: 108-112 https://doi.org/10.4103/0377-4929.40419
  16. Ngasala B, Mubi M, Warsame M, Petzold MG, Massele AY, Gustafsson LL, Tomson G, Premji Z, Bjorkman A. Impact of training in clinical and microscopy diagnosis of childhood malaria on antimalarial drug prescription and health outcome at primary health care level in Tanzania: a randomized controlled trial. Malar J 2008; 7: 199 https://doi.org/10.1186/1475-2875-7-199
  17. Tagbor H, Bruce J, Browne E, Greenwood B, Chandramohan D. Performance of the OptiMAL dipstick in the diagnosis of malaria infection in pregnancy. Ther Clin Risk Manag 2008; 4: 631-636 https://doi.org/10.2147/TCRM.S2809
  18. Zerpa N, Pabon R, Wide A, Gavidia M, Medina M, Caceres JL, Capaldo J, Baker M, Noya O. Evaluation of the OptiMAL test for diagnosis of malaria in Venezuela. Invest Clin 2008; 49: 93-101
  19. Ratsimbasoa A, Fanazava L, Radrianjafy R, Ramilijaona J, Rafanomezantsoa H, Menard D. Evaluation of two new immunochromatographic assays for diagnosis of malaria. Am J Trop Med Hyg 2008; 79: 670-672
  20. Endeshaw T, Gebre T, Ngondi J, Graves PM, Shargie EB, Ejigsemahu Y, Ayele B, Yohannes G, Teferi T, Messele A, Zerihun M, Genet A, Mosher AW, Emerson PM, Richards FO. Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia. Malar J 2008; 7: 118 https://doi.org/10.1186/1475-2875-7-118
  21. Lee SW, Jeon K, Jeon BR, Park I. Rapid diagnosis of vivax malaria by the SD Bioline Malaria Antigen test when thrombocytopenia is present. J Clin Microbiol 2008; 46: 939-942 https://doi.org/10.1128/JCM.02110-07
  22. Harvey SA, Jennings L, Chinyama M, Masaninga F, Mulholland K, Bell DR. Improving community health worker use of malaria rapid diagnostic tests in Zambia: package instructions, job aid and job aid-plus-training. Malar J 2008; 7: 160 https://doi.org/10.1186/1475-2875-7-160
  23. Holland CA, Kiechle FL. Point-of-care molecular diagnostic systems-past, present and future. Curr Opin Microbiol 2005; 8: 504-509 https://doi.org/10.1016/j.mib.2005.08.001
  24. Vo TK, Bigot P, Gazin P, Sinou V, De Pina JJ, Huynh DC, Fumoux F, Parzy D. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travelers. Trans R Soc Trop Med 2007; 101: 422-428 https://doi.org/10.1016/j.trstmh.2006.09.004
  25. Warhurst DC, Williams JE. Laboratory diagnosis of malaria. J Clin Pathol 1996; 49: 533-538 https://doi.org/10.1136/jcp.49.7.533
  26. Bharti AR, Patra KP, Chuquiyauri R, Kosek M, Gilman RH, Llanos-Cuentas A, Vinetz JM. Polymerase chain reaction detection of Plasmodium vivax and Plasmodium falciparum DNA from stored serum samples: implications for retrospective diagnosis of malaria. Am J Trop Med Hyg 2007; 77: 444-446
  27. Chotivanich K, Silamut K, Day NPJ. Laboratory diagnosis of malaria infection-a short review of methods. Aust J Med Sci 2006; 27: 11-15
  28. Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ 1988; 66: 621-628
  29. Ohrt C, Purnomo, Sutamihardia MA, Tang D, Kain KC. Impact of microscopy error on estimates of protective efficacy in malaria prevention trials. J Infect Dis 2002; 186: 540-546 https://doi.org/10.1086/341938
  30. Erdman LK, Kain KC. Molecular diagnostic and surveillance tools for global malaria control. Travel Med Infect Dis 2008; 6: 82-99 https://doi.org/10.1016/j.tmaid.2007.10.001
  31. Clendennen TE 3rd, Long GW, Baird KJ. QBC and Giemsa stained thick blood films: diagnostic performance of laboratory technologists. Trans R Soc Trop Med Hyg 1995; 89: 183-184 https://doi.org/10.1016/0035-9203(95)90486-7
  32. Pornsilapatip J, Namsiripongpun V, Wilde H, Hanvanich M, Chutivongse S. Detection of Plasmodia in acridine orange stained capillary tubes (the QBC system). Southeast Asian J Trop Med Public Health 1990; 21: 534-540
  33. Salako LA, Akinyanju O, Afolabi BM. Comparison of the standard Giemsa-stained thick blood smear with the Quantitative Buffy Coat Technique in malaria diagnosis in Nigeria. Niger Q J Hosp Med 1999; 9: 256-269
  34. Barman D, Mirdha BR, Samantray JC, Kironde F, Kabra SK, Guleria R. Evaluation of quantitative buffy coat (QBC) assay and polymerase chain reaction (PCR) for diagnosis of malaria. J Commun Dis 2003; 35: 170-181
  35. Adeoye GO, Nga IC. Comparison of Quantitative Buffy Coat technique (QBC) with Giemsa-stained Thick Film (GTF) for diagnosis of malaria. Parasitol Int 2007; 56: 308-312 https://doi.org/10.1016/j.parint.2007.06.007
  36. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 2002; 15: 66-78 https://doi.org/10.1128/CMR.15.1.66-78.2002
  37. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR. The reliability of diagnostic techniques in diagnosis and management of malaria in absence of a gold standard. Lancet Infect Dis 2006; 6: 582-588 https://doi.org/10.1016/S1473-3099(06)70579-5
  38. Cytec website. Partec reagents and accessories. [Accessed November 10, 2008]. Available at: http://www.partec.com/preview/cms/front_content.php?idcat=119& idart=201&highlight=malaria+diagnosis
  39. World Health Organization. WHO information consultation on recent advances in diagnostic techniques and vaccines for malaria: a rapid dipstick antigen capture assay for the diagnosis of falciparum malaria. Bull World Health Organ 1996; 74: 47-54
  40. Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 2006; 4: S7-S20 https://doi.org/10.1038/nrmicro1474
  41. World Health Organization. List of known commercially available antigen-detecting malaria RDTs. [Accessed November 12, 2008]. Available at: http://www.wpro.who.int/sites/rdt
  42. Park TS, Kim JH, Kang CI, Lee BH, Jeon BR, Lee SM, Chang CL, Lee EY, Son HC, Kim HH. Diagnostic usefulness of SD malaria antigen and antibody kits for differential diagnosis of vivax Malaria in patients with fever of unknown origin. Korean J Lab Med 2006; 26: 241-245 https://doi.org/10.3343/kjlm.2006.26.4.241
  43. Kim SH, Nam MH, Roh KH, Park HC, Nam DH, Park GH, Han ET, Klein TA, Lim CS. Evaluation of a rapid diagnostic test specific for Plasmodium vivax. Trop Med Int Health 2008; 13: 1495-1500 https://doi.org/10.1111/j.1365-3156.2008.02163.x
  44. McCutchan TF, Piper RC, Makler MT. Use of malaria rapid diagnostic test to identify Plasmodium knowlesi infection. Emerg Infect Dis 2008; 14: 1750-1752 https://doi.org/10.3201/eid1411.080840
  45. Chilton D, Malik AN, Armstrong M, Kettelhut M, Parker-Williams J, Chiodini PL. Use of rapid diagnostic tests for diagnosis of malaria in the UK. J Clin Pathol 2006; 59: 862-866 https://doi.org/10.1136/jcp.2005.032904
  46. Noedl H, Yingyuen K, Laoboonchai A, Fukuda M, Sirichaisinthop J, Miller RS. Sensitivity and specificity of an antigen detection ELISA for malaria diagnosis. Am J Trop Med Hyg 2006; 75: 1205-1208
  47. Doderer C, Heschung A, Guntz P, Cazenave JP, Hansmann Y, Senegas A, Pfaff AW, Abdelrahman T, Candolfi E. A new ELISA kit which uses a combination of Plasmodium falciparum extract and recombinant Plasmodium vivax antigens as an alternative to IFAT for detection of malaria antibodies. Malar J 2007; 6: 19 https://doi.org/10.1186/1475-2875-6-19
  48. Murray CK, Bell D, Gasser RA, Wongsrichanalai C. Rapid diagnostic testing for malaria. Trop Med Int Health 2003; 8: 876-883 https://doi.org/10.1046/j.1365-3156.2003.01115.x
  49. Murray CK, Gasser RA Jr, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev 2008; 21: 97-110 https://doi.org/10.1128/CMR.00035-07
  50. She RC, Rawlins ML, Mohl R, Perkins SL, Hill HR, Litwin CM. Comparison of immunofluorescence antibody testing and two enzyme immunoassays in the serologic diagnosis of malaria. J Travel Med 2007; 14: 105-111 https://doi.org/10.1111/j.1708-8305.2006.00087.x
  51. Sulzer AJ, Wilson M, Hall EC. Indirect fluorescent-antibody tests for parasitic diseases. An evaluation of a thick-smear antigen in the IFA test for malaria antibodies. Am J Trop Med Hyg 1969; 18: 199-205 https://doi.org/10.4269/ajtmh.1969.18.199
  52. Reesing HW. European strategies against the parasite transfusion risk. Transfus Clin Biol 2005; 12: 1-4 https://doi.org/10.1016/j.tracli.2004.12.001
  53. Mungai M, Tegtmeier G, Chamberland M, Parise M. Transfusiontransmitted malaria in the United States from 1963 through 1999. N Engl J Med 2001; 344: 1973-1978 https://doi.org/10.1056/NEJM200106283442603
  54. Oh JS, Kim JS, Lee CH, Nam DH, Kim SH, Park DW, Lee CK, Lim CS, Park GH. Evaluation of a malaria antibody enzyme immunoassay for use in blood screening. Mem Inst Oswaldo Cruz 2008; 103: 75-78 https://doi.org/10.1590/S0074-02762008005000008
  55. Morassin B, Fabre R, Berry A, Magnaval JF. One year's experience with the polymerase chain reaction as a routine method for the diagnosis of imported malaria. Am J Trop Med Hyg 2002; 66: 503-508 https://doi.org/10.4269/ajtmh.2002.66.503
  56. Makler MT, Palmer CJ, Ager AL. A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol 1998; 92: 419-433 https://doi.org/10.1080/00034989859401
  57. Rakotonirina H, Barnadas C, Raherijafy R, Andrianantenaina H, Ratsimbasoa A, Randrianasolo L, Jahevitra M, Andriantsoanirina V, Me@nard D. Accuracy and reliability of malaria diagnostic techniques for guiding febrile outpatient treatment in malaria-endemic countries. Am J Trop Med Hyg 2008; 78: 217-221
  58. Swan H, Sloan L, Muyombwe A, Chavalitshewinkoon-Petmitr P, Krudsood S, Leowattana W, Wilairatana P, Looareesuwan S, Rosenblatt J. Evaluation of a real-time polymerase chain reaction assay for the diagnosis of malaria in patients from Thailand. Am J Trop Med Hyg 2005; 73: 850-854
  59. Hawkes M, Kain KC. Advance in malaria diagnosis. Expert Rev Anti Infect Ther 2007; 5: 1-11 https://doi.org/10.1586/14787210.5.1.1
  60. Imwong M, Pukrittayakamee S, Pongtavornpinyo W, Nakeesathit S, Nair S, Newton P, Nosten F, Anderson TJ, Dondorp A, Day NP, White NJ. Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrob Agents Chemother 2008; 52: 2657-2659 https://doi.org/10.1128/AAC.01459-07
  61. Mens PF, Schoone GJ, Kager PA, Schallig HD. Detection and identification of human Plasmodium species with real time quantitative nucleic acid sequence based amplification. Malar J 2006; 5: 80 https://doi.org/10.1186/1475-2875-5-80
  62. Mlambo G, Vasquez Y, LeBlanc R, Sullivan D, Kumar N. A filter paper method for the detection of Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. Am J Trop Med Hyg 2008; 78: 114-116
  63. Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A, Ratnam S, Rahman HA, Conway DJ, Singh B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 2008; 46: 165-171 https://doi.org/10.1086/524888
  64. Luchavez J, Espino F, Curameng P, Espina R, Bell D, Chiodini P, Nolder D, Sutherland C, Lee KS, Singh B. Human infections with Plasmodium knowlesi, the Philippines. Emerg Infect Dis 2008; 14: 811-813 https://doi.org/10.3201/eid1405.071407
  65. Ng OT, Ooi EE, Lee CC, Lee PJ, Ng LC, Pei SW, Tu TM, Loh JP, Leo YS. Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg Infect Dis 2008; 14: 814-816 https://doi.org/10.3201/eid1405.070863
  66. Mens PF, van Amerongen A, Sawa P, Kager PA, Schallig HD. Molecular diagnosis of malaria in the field: development of a novel 1-step nucleic acid lateral flow immunoassay for the detection of all 4 human Plasmodium spp. and its evaluation in Mbita, Kenya. Diagn Microbiol Infect Dis 2008; 61: 421-427 https://doi.org/10.1016/j.diagmicrobio.2008.03.009
  67. Hanscheid T, Grobusch MP. How useful is PCR in the diagnosis of malaria? Trends Parasitol 2002; 18: 395-398 https://doi.org/10.1016/S1471-4922(02)02348-6
  68. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Peiris JS. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 2006; 52: 303-306 https://doi.org/10.1373/clinchem.2005.057901
  69. Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, Jin L, Takeo S, Tsuboi T. Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 2007; 45: 2521-2528 https://doi.org/10.1128/JCM.02117-06
  70. Aonuma H, Suzuki M, Iseki H, Perera N, Nelson B, Igarashi I, Yagi T, Kanuka H, Fukumoto S. Rapid identification of Plasmodiumcarrying mosquitoes using loop-mediated isothermal amplification. Biochem Biophys Res Commun 2008; 376: 671-676 https://doi.org/10.1016/j.bbrc.2008.09.061
  71. Crameri A, Marfurt J, Mugittu K, Maire N, Regos A, Coppee JY, Sismeiro O, Burki R, Huber E, Laubscher D, Puijalon O, Genton B, Felger I, Beck HP. Rapid microarray-based method for monitoring of all currently known single-nucleotide polymorphisms associated with parasite resistance to antimalaria drugs. J Clin Microbiol 2007; 45: 3685-3691 https://doi.org/10.1128/JCM.01178-07
  72. Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 2008; 8: 4680-4694 https://doi.org/10.1002/pmic.200800194
  73. Patarakul K. Role of DNA microarray in infectious diseases. Chula Med J 2008; 52: 147-153
  74. Palacios G, Quan PL, Jabado OJ, Conlan S, Hirschberg DL, Liu Y, Zhai J, Renwick N, Hui J, Hegyi H, Grolla A, Strong JE, Towner JS, Geisbert TW, Jahrling PB, Bu_chen-Osmond C, Ellerbrok H, Sanchez-Seco MP, Lussier Y, Formenty P, Nichol MS, Feldmann H, Briese T, Lipkin WI. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 2007; 13: 73-81 https://doi.org/10.3201/eid1301.060837
  75. Wongchotigul V, Suwanna N, Krudsood S, Chindanond D, Kano S, Hanaoka N, Akai Y, Maekawa Y, Nakayama S, Kojima S, Looareesuwan S. The use of flow cytometry as a diagnostic test for malaria parasites. Southeast Asian J Trop Med Public Health 2004; 35: 552-559
  76. Shapiro HM, Mandy F. Cytometry in malaria: moving beyond Giemsa. Cytometry A 2007; 71: 643-645 https://doi.org/10.1002/cyto.a.20453
  77. Izumiyama S, Omura M, Takasaki T, Ohmae H, Asahi H. Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. Exp Parasitol 2009; 121: 144-150 https://doi.org/10.1016/j.exppara.2008.10.008
  78. Grobusch MP, Ha_nscheid T, Kra_mer B, Neukammer J, May J, Seybold J, Kun JF, Suttorp N. Sensitivity of hemozoin detection by automated flow cytometry in non- and semi-immune malaria patients. Cytometry B Clin Cytom 2003; 55: 46-51 https://doi.org/10.1002/cyto.b.10039
  79. Padial MM, Subirats M, Puente S, Lago M, Crespo S, Palacios G, Baquero M. Sensitivity of laser light depolarization analysis for detection of malaria in blood samples. J Med Microbiol 2005; 54: 449-452 https://doi.org/10.1099/jmm.0.45650-0
  80. de Langen AJ, van Dillen J, de Witte P, Mucheto S, Nagelkerke N, Kager P. Automated detection of malaria pigment: feasibility for malaria diagnosing in an area with seasonal malaria in northern Namibia. Trop Med Int Health 2006; 11: 809-816 https://doi.org/10.1111/j.1365-3156.2006.01634.x
  81. Hanscheid T, Melo-Cristino J, Pinto BG. Automated detection of malaria pigment in white blood cells for the diagnosis of malaria in Portugal. Am J Trop Med Hyg 2001; 64: 290-292 https://doi.org/10.4269/ajtmh.2001.64.290
  82. Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, Liebowitz L, Marshall L, Scott S, Coetzer TL. Automated malaria detection by depolarization of laser light. Br J Haematol 1999; 104: 499-503 https://doi.org/10.1046/j.1365-2141.1999.01199.x
  83. Briggs C, Costa AD, Freeman Lyn, Aucamp I, Ngubeni B, Machin SJ. Development of an automated malaria discriminant factor using VCS technology. Am J Clin Pathol 2006; 126: 691-698 https://doi.org/10.1309/0PL3C674M39D6GEN
  84. Scholl PF, Kongkasuriyachai D, Demirev PA, Feldman AB, Lin JS, Sullivan DJ Jr, Kumar N. Rapid detection of malaria infection in vivo by laser desorption mass spectrometry. Am J Trop Med Hyg 2004; 71: 546-551
  85. Park JW, Yoo SB, Oh JH, Yeom JS, Lee YH, Bahk YY, Kim YS, Lim KJ. Diagnosis of vivax malaria using an IgM capture ELISA is a sensitive method, even for low levels of parasitemia. Parasitol Res 2008; 103: 625-631 https://doi.org/10.1007/s00436-008-1023-3
  86. Polpanich D, Tangboriboonrat P, Elaissari A, Udomsangpetch R. Detection of malaria infection via latex agglutination assay. Anal Chem 2007; 79: 4690-4695 https://doi.org/10.1021/ac070502w
  87. Chotivanich K, Silamut K, Udomsangpetch R, Stepniewska KA, Pukrittayakamee S, Looareesuwan S, White NJ. Ex-vivo short-term culture and developmental assessment of Plasmodium vivax. Trans R Soc Trop Med Hyg 2001; 95: 677-680 https://doi.org/10.1016/S0035-9203(01)90113-0
  88. Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J. Cultivation of Plasmodium vivax. Trends Parasitol 2008; 24: 85-88 https://doi.org/10.1016/j.pt.2007.09.010
  89. Prommano O, Chaisri U, Turner GD, Wilairatana P, Ferguson DJ, Viriyavejakul P, White NJ, Pongponratn E. A quantitative ultrastructural study of the liver and the spleen in fatal falciparum malaria. Southeast Asian J Trop Med Public Health 2005; 36: 1359-1370
  90. Nguansangiam S, Day NP, Hien TT, Mai NT, Chaisri U, Riganti M, Dondorp AM, Lee SJ, Phu NH, Turner GD, White NJ, Ferguson DJ, Pongponratn E. A quantitative ultrastructural study of renal pathology in fatal Plasmodium falciparum malaria. Trop Med Int Health 2007; 12: 1037-1050 https://doi.org/10.1111/j.1365-3156.2007.01881.x
  91. Sachanonta N, Medana IM, Roberts R, Jones M, Day NP, White NJ, Ferguson DJ, Turner GD, Pongponratn E. Host vascular endothelial growth factor is tropic for Plasmodium falciparum-infected red blood cells. Asian Pac J Allergy Immunol 2008; 26: 37-45

피인용 문헌

  1. Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres? vol.9, pp.None, 2009, https://doi.org/10.1186/1475-2875-9-349
  2. Prospective study on severe malaria among in-patients at Bombo regional hospital, Tanga, north-eastern Tanzania vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2334-11-256
  3. A preliminary comparative report of quantitative buffy coat and modified quantitative buffy coat with peripheral blood smear in malaria diagnosis vol.106, pp.6, 2012, https://doi.org/10.1179/2047773212y.0000000024
  4. Real-time PCR diagnosis of Plasmodium vivax among blood donors vol.11, pp.None, 2009, https://doi.org/10.1186/1475-2875-11-345
  5. LABORATORY DIAGNOSIS OF MALARIA, A REVIEW vol.1, pp.4, 2009, https://doi.org/10.14260/jemds/72
  6. Development of a Novel Fluorophore for Real-Time Biomonitoring System vol.7, pp.11, 2012, https://doi.org/10.1371/journal.pone.0048459
  7. Assessment of Clinical Diagnosis, Microscopy, Rapid Diagnostic Tests, and Polymerase Chain Reaction in the Diagnosis of Plasmodium falciparum in Nigeria vol.2013, pp.None, 2009, https://doi.org/10.1155/2013/308069
  8. What is the best strategy for the prevention of transfusion-transmitted malaria in sub-Saharan African countries where malaria is endemic? vol.12, pp.None, 2009, https://doi.org/10.1186/1475-2875-12-465
  9. Quantitative phase imaging and Raman micro-spectroscopy applied to Malaria vol.8, pp.suppl1, 2009, https://doi.org/10.1186/1746-1596-8-s1-s42
  10. Machine learning approach for automated screening of malaria parasite using light microscopic images vol.45, pp.None, 2009, https://doi.org/10.1016/j.micron.2012.11.002
  11. Passive gravitational sedimentation of peripheral blood increases the sensitivity of microscopic detection of malaria vol.6, pp.7, 2009, https://doi.org/10.1016/s1995-7645(13)60095-4
  12. Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures vol.8, pp.1, 2009, https://doi.org/10.1002/prca.201300074
  13. Clinical malaria diagnosis in pregnancy in relation to early perinatal mother‐to‐child transmission of HIV: a prospective cohort study vol.15, pp.5, 2009, https://doi.org/10.1111/hiv.12111
  14. LH750 hematology analyzers to identify malaria and dengue and distinguish them from other febrile illnesses vol.36, pp.1, 2014, https://doi.org/10.1111/ijlh.12116
  15. Evaluation de la fonction hépatique au cours du paludisme grave chez les enfants de moins de cinq ans à Kinshasa en République Démocratique du Congo vol.19, pp.None, 2009, https://doi.org/10.11604/pamj.2014.19.266.4673
  16. Impact of a training course on the quality of malaria diagnosis by microscopy in Angola vol.13, pp.None, 2009, https://doi.org/10.1186/1475-2875-13-437
  17. Perceptions of malaria and acceptance of rapid diagnostic tests and related treatment practises among community members and health care providers in Greater Garissa, North Eastern Province, Kenya vol.13, pp.None, 2009, https://doi.org/10.1186/1475-2875-13-502
  18. Nested-PCR and a New ELISA-Based NovaLisa Test Kit for Malaria Diagnosis in an Endemic Area of Thailand vol.52, pp.4, 2009, https://doi.org/10.3347/kjp.2014.52.4.377
  19. Assessment of Fever in Returned Travelers vol.86, pp.4, 2009, https://doi.org/10.3904/kjm.2014.86.4.438
  20. Evaluation of a Novel Magneto-Optical Method for the Detection of Malaria Parasites vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0096981
  21. Detection and Quantification of Early-Stage Malaria Parasites in Laboratory Infected Erythrocytes by Attenuated Total Reflectance Infrared Spectroscopy and Multivariate Analysis vol.86, pp.9, 2009, https://doi.org/10.1021/ac500199x
  22. Simple sample processing enhances malaria rapid diagnostic test performance vol.139, pp.12, 2009, https://doi.org/10.1039/c4an00338a
  23. Malaria and anaemia in pregnancy: a cross-sectional study of pregnant women in rural communities of Southeastern Nigeria vol.6, pp.2, 2009, https://doi.org/10.1093/inthealth/ihu009
  24. Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy vol.139, pp.19, 2014, https://doi.org/10.1039/c4an00989d
  25. Malaria detection using inertial microfluidics vol.15, pp.4, 2009, https://doi.org/10.1039/c4lc01058b
  26. Dynamical footprint of falcipain-2 catalytic triad in hemoglobin-β-bound state. vol.33, pp.5, 2009, https://doi.org/10.1080/07391102.2014.924878
  27. Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas vol.14, pp.None, 2009, https://doi.org/10.1186/s12936-015-0868-z
  28. Reduced deformability of parasitized red blood cells as a biomarker for anti-malarial drug efficacy vol.14, pp.None, 2015, https://doi.org/10.1186/s12936-015-0957-z
  29. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection vol.5, pp.None, 2009, https://doi.org/10.1038/srep11425
  30. Development of inexpensive blood imaging systems: where are we now? vol.12, pp.5, 2009, https://doi.org/10.1586/17434440.2015.1075388
  31. Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Malaria in Endemic Areas vol.10, pp.9, 2009, https://doi.org/10.1371/journal.pone.0136726
  32. Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics vol.5, pp.3, 2009, https://doi.org/10.3390/bios5030577
  33. Novel techniques and future directions in molecular diagnosis of malaria in resource-limited settings vol.15, pp.11, 2009, https://doi.org/10.1586/14737159.2015.1090878
  34. Computational microscopic imaging for malaria parasite detection: a systematic review vol.260, pp.1, 2009, https://doi.org/10.1111/jmi.12270
  35. Refined Method for Droplet Microfluidics-Enabled Detection of Plasmodium falciparum Encoded Topoisomerase I in Blood from Malaria Patients vol.6, pp.10, 2009, https://doi.org/10.3390/mi6101432
  36. Utility of nested polymerase chain reaction over the microscopy and immuno-chromatographic test in the detection of Plasmodium species and their clinical spectrum vol.115, pp.9, 2016, https://doi.org/10.1007/s00436-016-5098-y
  37. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum vol.16, pp.4, 2009, https://doi.org/10.1039/c5lc01248a
  38. High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection vol.16, pp.11, 2009, https://doi.org/10.1039/c6lc00162a
  39. Comparison of Partec Rapid Malaria Test with Conventional Light Microscopy for Diagnosis of Malaria in Northwest Ethiopia vol.2016, pp.None, 2009, https://doi.org/10.1155/2016/3479457
  40. Comparative Performance Evaluation of Routine Malaria Diagnosis at Ho Municipal Hospital vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/5837890
  41. Delayed Diagnosis of Falciparum Malaria with Acute Kidney Injury vol.31, pp.9, 2016, https://doi.org/10.3346/jkms.2016.31.9.1499
  42. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy vol.6, pp.None, 2009, https://doi.org/10.1038/srep24461
  43. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities vol.21, pp.5, 2009, https://doi.org/10.3390/molecules21050529
  44. Continuous-Flow Separation of Malaria-Infected Human Erythrocytes Using DC Dielectrophoresis: An Electrokinetic Modeling and Simulation vol.55, pp.19, 2009, https://doi.org/10.1021/acs.iecr.6b00660
  45. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass vol.187, pp.None, 2009, https://doi.org/10.1039/c5fd00181a
  46. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples vol.6, pp.62, 2009, https://doi.org/10.1039/c6ra05025e
  47. Review of Surface Enhanced Raman Spectroscopy for Malaria Diagnosis and a New Approach for the Detection of Single Parasites in the Ring Stage vol.22, pp.4, 2009, https://doi.org/10.1109/jstqe.2016.2518959
  48. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites vol.82, pp.None, 2009, https://doi.org/10.1016/j.bios.2016.03.050
  49. Parasites vol.4, pp.4, 2009, https://doi.org/10.1128/microbiolspec.dmih2-0013-2015
  50. Minimising invasiveness in diagnostics: developing a rapid urine‐based monoclonal antibody dipstick test for malaria vol.21, pp.10, 2016, https://doi.org/10.1111/tmi.12744
  51. Colorimetric Detection of Plasmodium vivax in Urine Using MSP10 Oligonucleotides and Gold Nanoparticles vol.10, pp.10, 2009, https://doi.org/10.1371/journal.pntd.0005029
  52. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods vol.15, pp.None, 2009, https://doi.org/10.1186/s12936-016-1400-9
  53. Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya vol.15, pp.None, 2009, https://doi.org/10.1186/s12936-016-1508-y
  54. Serological markers to measure recent changes in malaria at population level in Cambodia vol.15, pp.None, 2009, https://doi.org/10.1186/s12936-016-1576-z
  55. Clinical malaria diagnosis: rule-based classification statistical prototype vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2628-0
  56. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients vol.6, pp.6, 2009, https://doi.org/10.1098/rsfs.2016.0048
  57. Diagnostic accuracy of rapid antigen test for malaria and determinants of heavy malaria parasitaemia in children at the Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria vol.17, pp.2, 2009, https://doi.org/10.4103/njhs.njhs_3_19
  58. Malaria in British military personnel deployed to Sierra Leone: a case series vol.163, pp.1, 2017, https://doi.org/10.1136/jramc-2016-000627
  59. Aptamer Technology: Adjunct Therapy for Malaria vol.5, pp.1, 2009, https://doi.org/10.3390/biomedicines5010001
  60. Erythrocyte segmentation for quantification in microscopic images of thin blood smears vol.32, pp.4, 2009, https://doi.org/10.3233/jifs-169227
  61. A portable image-based cytometer for rapid malaria detection and quantification vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0179161
  62. A Simple, Efficient and Ultrasensitive Gold Nanourchin Based Electrochemical Sensor for the Determination of an Antimalarial Drug: Mefloquine vol.29, pp.9, 2009, https://doi.org/10.1002/elan.201700154
  63. Five Years Malaria Trend Analysis in Woreta Health Center, Northwest Ethiopia vol.27, pp.5, 2017, https://doi.org/10.4314/ejhs.v27i5.4
  64. State of diagnosing infectious pathogens using colloidal nanomaterials vol.146, pp.None, 2009, https://doi.org/10.1016/j.biomaterials.2017.08.013
  65. Performance of loop-mediated isothermal amplification (LAMP) for the diagnosis of malaria among malaria suspected pregnant women in Northwest Ethiopia vol.16, pp.None, 2009, https://doi.org/10.1186/s12936-017-1692-4
  66. New potential Plasmodium brasilianum hosts: tamarin and marmoset monkeys (family Callitrichidae) vol.16, pp.None, 2009, https://doi.org/10.1186/s12936-017-1724-0
  67. Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: potential for a non-invasive saliva-based diagnostic test for malaria vol.16, pp.None, 2009, https://doi.org/10.1186/s12936-017-2084-5
  68. Development of an Immunosensor for Pf HRP 2 as a Biomarker for Malaria Detection vol.7, pp.3, 2009, https://doi.org/10.3390/bios7030028
  69. Single Domain Antibodies as New Biomarker Detectors vol.7, pp.4, 2017, https://doi.org/10.3390/diagnostics7040052
  70. Epidemiology of Malaria in Yulin, South China 1999-2016: Imported Malaria Threatens Zero Local Case Status vol.18, pp.10, 2009, https://doi.org/10.1089/vbz.2017.2236
  71. Clinical and Laboratory Features Associated with Acute Kidney Injury in Severe Malaria vol.22, pp.10, 2009, https://doi.org/10.4103/ijccm.ijccm_468_17
  72. Fabrication of a Lab-on-Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria-Ab ELISA vol.9, pp.1, 2018, https://doi.org/10.3390/mi9010027
  73. Malaria Disease Recommendations for Solid Organ Transplant Recipients and Donors vol.102, pp.2, 2018, https://doi.org/10.1097/tp.0000000000002017
  74. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach vol.15, pp.2, 2009, https://doi.org/10.3390/ijerph15020259
  75. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P . vivax in India vol.13, pp.3, 2009, https://doi.org/10.1371/journal.pone.0193046
  76. Evaluation of fluorescent in-situ hybridization technique for diagnosis of malaria in Ahero Sub-County hospital, Kenya vol.18, pp.None, 2018, https://doi.org/10.1186/s12879-017-2875-x
  77. Seasonal variations in Plasmodium falciparum parasite prevalence assessed by varying diagnostic tests in asymptomatic children in southern Ghana vol.13, pp.6, 2018, https://doi.org/10.1371/journal.pone.0199172
  78. Evaluation of the Clinical Proficiency of RDTs, Microscopy and Nested PCR in the Diagnosis of Symptomatic Malaria in Ilorin, North-Central, Nigeria vol.6, pp.6, 2009, https://doi.org/10.3889/oamjms.2018.218
  79. Malaria in India: The Need for New Targets for Diagnosis and Detection ofPlasmodium vivax vol.12, pp.4, 2018, https://doi.org/10.1002/prca.201700024
  80. Identification of Highly ExpressedPlasmodium VivaxProteins from Clinical Isolates Using Proteomics vol.12, pp.4, 2018, https://doi.org/10.1002/prca.201700046
  81. Microscopic malaria parasitemia diagnosis and grading on benchmark datasets vol.81, pp.9, 2009, https://doi.org/10.1002/jemt.23071
  82. Assessing the performance of only HRP2 and HRP2 with pLDH based rapid diagnostic tests for the diagnosis of malaria in middle Ghana, Africa vol.13, pp.9, 2009, https://doi.org/10.1371/journal.pone.0203524
  83. Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers vol.12, pp.4, 2009, https://doi.org/10.1088/1752-7163/aadbbb
  84. A diagnostic performance evaluation of rapid diagnostic tests and microscopy for malaria diagnosis using nested polymerase chain reaction as reference standard in a tertiary hospital in Jos, Nigeria vol.112, pp.10, 2018, https://doi.org/10.1093/trstmh/try071
  85. A case of importedPlasmodium Falciparumchloroquine and Sulfadoxine-Pyrimethamine sensitive in a Finland male presentation vol.434, pp.None, 2009, https://doi.org/10.1088/1757-899x/434/1/012145
  86. Development of a high-throughput flexible quantitative suspension array assay for IgG against multiple Plasmodium falciparum antigens vol.17, pp.None, 2018, https://doi.org/10.1186/s12936-018-2365-7
  87. Malaria and the ‘last’ parasite: how can technology help? vol.17, pp.None, 2009, https://doi.org/10.1186/s12936-018-2408-0
  88. Accuracy of One Step malaria rapid diagnostic test (RDT) in detecting Plasmodium falciparum placental malaria infection in women living in Yaoundé, Cameroon vol.17, pp.None, 2018, https://doi.org/10.1186/s12936-018-2595-8
  89. Diagnostic tools in childhood malaria vol.11, pp.1, 2009, https://doi.org/10.1186/s13071-018-2617-y
  90. Diagnostic tools for tackling febrile illness and enhancing patient management vol.201, pp.None, 2018, https://doi.org/10.1016/j.mee.2018.10.001
  91. Enhancing the sensitivity of micro magnetic resonance relaxometry detection of low parasitemia Plasmodium falciparum in human blood vol.9, pp.None, 2009, https://doi.org/10.1038/s41598-019-38805-2
  92. Bayesian evaluation of the performance of three diagnostic tests for Plasmodium falciparum infection in a low-transmission setting in Kilifi County, Kenya vol.4, pp.None, 2019, https://doi.org/10.12688/wellcomeopenres.15204.3
  93. Plasmodium genomics: an approach for learning about and ending human malaria vol.118, pp.1, 2009, https://doi.org/10.1007/s00436-018-6127-9
  94. Selecting better diagnostic kits for diagnosis of malarial parasites at point of care vol.9, pp.1, 2009, https://doi.org/10.1007/s13205-018-1566-7
  95. A 4-Day Incubation Period of Plasmodium falciparum Infection in a Nonimmune Patient in Ghana: A Case Report vol.6, pp.1, 2009, https://doi.org/10.1093/ofid/ofy169
  96. Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics vol.91, pp.1, 2019, https://doi.org/10.1021/acs.analchem.8b03636
  97. Health Information Literacy among Malaria Patients in Ghana: Sustainable Development Goals (SDG) 3 in Focus vol.12, pp.None, 2009, https://doi.org/10.2174/1874944501912010100
  98. Knowledge, Attitude, and Practice Related to Malaria Diagnosis among Healthcare Workers in Hospitals: A Cross-Sectional Survey vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1414079
  99. Malaria: The Past and the Present vol.7, pp.6, 2019, https://doi.org/10.3390/microorganisms7060179
  100. Malaria-Infected Red Blood Cell Analysis through Optical and Biochemical Parameters Using the Transport of Intensity Equation and the Microscope’s Optical Properties vol.19, pp.14, 2009, https://doi.org/10.3390/s19143045
  101. EFFECT OF ARTIFICIAL INTELLIGENCE-BASED TECHNOLOGY IN MALARIA DIAGNOSIS vol.6, pp.29, 2019, https://doi.org/10.18410/jebmh/2019/392
  102. Evaluación de la calidad del diagnóstico de malaria en la red local de laboratorios y en los laboratorios intermedios en el contexto de la eliminación de la enfermedad en Ecuador vol.39, pp.suppl2, 2009, https://doi.org/10.7705/biomedica.v39i4.4686
  103. Persistence of Imported Malaria Into the United Kingdom: An Epidemiological Review of Risk Factors and At-risk Groups vol.69, pp.7, 2009, https://doi.org/10.1093/cid/ciy1037
  104. Diagnostic tools used in the evaluation of acute febrile illness in South India: a scoping review vol.19, pp.1, 2009, https://doi.org/10.1186/s12879-019-4589-8
  105. Occurrence and seasonal variation of human Plasmodium infection in Punjab Province, Pakistan vol.19, pp.None, 2009, https://doi.org/10.1186/s12879-019-4590-2
  106. Diagnostic performance of CareStart™ malaria HRP2/pLDH test in comparison with standard microscopy for detection of uncomplicated malaria infection among symptomatic patients, Eastern Coast of T vol.18, pp.1, 2019, https://doi.org/10.1186/s12936-019-2990-9
  107. Cost-effectiveness analysis of malaria rapid diagnostic tests: a systematic review vol.8, pp.1, 2009, https://doi.org/10.1186/s40249-019-0615-8
  108. Diagnosis of Malaria Parasites Plasmodium spp. in Endemic Areas: Current Strategies for an Ancient Disease vol.42, pp.1, 2009, https://doi.org/10.1002/bies.201900138
  109. Inter-rater Variability in Malaria Microscopy at the LEKMA Hospital, Ghana vol.2020, pp.None, 2009, https://doi.org/10.1155/2020/8897337
  110. Stringent Selection of Knobby Plasmodium falciparum -Infected Erythrocytes during Cytoadhesion at Febrile Temperature vol.8, pp.2, 2020, https://doi.org/10.3390/microorganisms8020174
  111. A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics vol.76, pp.1, 2009, https://doi.org/10.1111/biom.13142
  112. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches vol.21, pp.7, 2020, https://doi.org/10.3390/ijms21072323
  113. Utility of Rapid Diagnostic Tests for Detection of Malarial Antigens and Their Comparison with Peripheral Blood Smear Examination vol.9, pp.15, 2009, https://doi.org/10.14260/jemds/2020/280
  114. Severe malaria. Current concepts and practical overview: What every intensivist should know vol.46, pp.5, 2009, https://doi.org/10.1007/s00134-020-06019-0
  115. Spatial and epidemiological drivers of Plasmodium falciparum malaria among adults in the Democratic Republic of the Congo vol.5, pp.6, 2020, https://doi.org/10.1136/bmjgh-2020-002316
  116. Targeted repression of Plasmodium apicortin by host microRNA impairs malaria parasite growth and invasion vol.13, pp.6, 2009, https://doi.org/10.1242/dmm.042820
  117. A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection vol.22, pp.6, 2009, https://doi.org/10.3390/e22060657
  118. Could the Level in Parasitaemia of Plasmodium Determine Sensitivity to Various Diagnostic Tests? vol.10, pp.3, 2009, https://doi.org/10.4236/ajmb.2020.103015
  119. Comparision of the various routine diagnostic modalities of malaria and a new method: the Parasight™ platform vol.44, pp.3, 2009, https://doi.org/10.1007/s12639-020-01221-9
  120. ITEM-THREE analysis of a monoclonal anti-malaria antibody reveals its assembled epitope on the pfMSP119 antigen vol.295, pp.44, 2009, https://doi.org/10.1074/jbc.ra120.014802
  121. Design, synthesis and biological evaluation of several aromatic substituted chalcones as antimalarial agents vol.81, pp.8, 2009, https://doi.org/10.1002/ddr.21727
  122. Malaria distribution and performance of malaria diagnostic methods in Malaysia (1980–2019): a systematic review vol.19, pp.1, 2009, https://doi.org/10.1186/s12936-020-03470-8
  123. Detection and stage classification of Plasmodium falciparum from images of Giemsa stained thin blood films using random forest classifiers vol.15, pp.1, 2009, https://doi.org/10.1186/s13000-020-01040-9
  124. Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks vol.1, pp.None, 2009, https://doi.org/10.1017/s2633903x21000015
  125. Synthesis and characterization of WO3-doped polyaniline to sense biomarker VOCs of Malaria vol.11, pp.1, 2021, https://doi.org/10.1007/s13204-020-01551-3
  126. Role of Platelet Indices as a Potential Marker for Malaria Severity vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5531091
  127. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies vol.39, pp.2, 2021, https://doi.org/10.1080/07391102.2020.1713215
  128. Modelling the impact of rapid diagnostic tests on Plasmodium vivax malaria in South Korea: a cost–benefit analysis vol.6, pp.2, 2009, https://doi.org/10.1136/bmjgh-2020-004292
  129. Performance assessment of a widely used rapid diagnostic test CareStart™ compared to microscopy for the detection of Plasmodium in asymptomatic patients in the Western region of Cameroon vol.7, pp.2, 2009, https://doi.org/10.1016/j.heliyon.2021.e06271
  130. Fully automated point-of-care differential diagnosis of acute febrile illness vol.15, pp.2, 2009, https://doi.org/10.1371/journal.pntd.0009177
  131. A Near-Infrared “Matchbox Size” Spectrometer to Detect and Quantify Malaria Parasitemia vol.93, pp.13, 2021, https://doi.org/10.1021/acs.analchem.0c05103
  132. Malaria Rapid Diagnostic Tests: Literary Review and Recommendation for a Quality Assurance, Quality Control Algorithm vol.11, pp.5, 2009, https://doi.org/10.3390/diagnostics11050768
  133. A Lab‐On‐chip Tool for Rapid, Quantitative, and Stage‐selective Diagnosis of Malaria vol.8, pp.14, 2009, https://doi.org/10.1002/advs.202004101
  134. Ultraviolet/Visible and Near-Infrared Dual Spectroscopic Method for Detection and Quantification of Low-Level Malaria Parasitemia in Whole Blood vol.93, pp.39, 2021, https://doi.org/10.1021/acs.analchem.1c02948
  135. Diagnosing Malaria Patients with Plasmodium falciparum and vivax Using Deep Learning for Thick Smear Images vol.11, pp.11, 2021, https://doi.org/10.3390/diagnostics11111994
  136. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis vol.6, pp.11, 2009, https://doi.org/10.1021/acssensors.1c01750
  137. Assessment of Microscopic Detection of Malaria with Nested Polymerase Chain Reaction in War-Torn Federally Administered Tribal Areas of Pakistan vol.66, pp.4, 2009, https://doi.org/10.1007/s11686-021-00374-8
  138. Performance evaluation of RDT, light microscopy, and PET-PCR for detecting Plasmodium falciparum malaria infections in the 2018 Zambia National Malaria Indicator Survey vol.20, pp.1, 2009, https://doi.org/10.1186/s12936-021-03917-6
  139. Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies vol.13, pp.12, 2009, https://doi.org/10.3390/pharmaceutics13122189
  140. Oxidation of chloroquine drug by ferrate: Kinetics, reaction mechanism and antibacterial activity vol.428, pp.None, 2022, https://doi.org/10.1016/j.cej.2021.131408
  141. Extrinsic parameter's adjustment and potential implications in Plasmodium falciparum malaria diagnosis vol.85, pp.2, 2009, https://doi.org/10.1002/jemt.23940