DOI QR코드

DOI QR Code

General Enzymatic Properties of Human Histidine Acid Phosphatase-Phytase

히스티딘 에시드 포스파테이즈(Histidine Acid Phosphatase) 계열 인간 파이테이즈(Phytase)의 일반적 특성규명

  • Cho, Jaie-Soon (Department of Animal Sciences and Environment, College of Animal Bioscience & Technology, Konkuk University)
  • 조재순 (건국대학교 동물생명과학대학 동물생산환경학)
  • Received : 2009.03.11
  • Accepted : 2009.04.20
  • Published : 2009.04.01

Abstract

The glycosylated human MINPP (multiple inositol polyphosphate phosphatase), which was recombinantly over-expressed by using industrial host, Pichia pastoris, showed the phytase activity against phytate ($InsP_6$) and the enzyme activity of the unglycosylated counterpart was decreased to 30%. The optimal phytase activity occurred at pH 7.4. The human MINPP showed high substrate specificity for $InsP_6$ with little activity on other organic phosphate conjugates such as para-nitrophenylphosphate (pNPP), ATP, and ribose-1-phosphate (R-1-P). The phosphatase activity against 2,3-bisphosphoglycerate (2,3-BPG) by human MINPP was increased to 1.2-fold in the presence of stimulator, 1 mM 2-phosphoglycolate (2-PG) but the phytase activity against $InsP_6$ was not affected by addition of 1 mM 2-PG. The phosphatase activity against 2,3-BPG by human MINPP was not increased in the presence of 2 mM $Mg^{2+}$ or 100 mM $Cl^-$.

산업용 균주인 Pichia pastoris에서 재조합 발현된 당화된 인간유래 MINPP (multiple inositol polyphosphate phosphatase) 효소는 기질 피틴태인(InsP6)에 대한 파이테이즈 효소활성을 나타내었고 탈당화시 그 효소활성이 30% 감소되었다. 그 효소의 기질 $InsP_6$에 대한 최적 pH 활성은 중성범위인 pH 7.4였다. 기질특이성 측면에서 인간 MINPP 효소는 para-nitrophenylphosphate (pNPP), ATP, ribose-1-phosphate (R-1-P)와 같은 유기인산화합물(organic phosphate conjugates)의 분해활성은 매우 낮은 대신, 기질 $InsP_6$를 효과적으로 분해하였고 특히 화학적 자극제인(chemical stimulator)인 1 mM 2-phosphoglycolate (2-PG)의 첨가에 따른 기질 2,3-bisphosphoglycerate (2,3-BPG)에 대한 효소활성이 2-PG를 첨가하지 않을때 보다 1.2배 증가되었지만 기질 $InsP_6$에 대한 효소활성에는 영향을 주지 않았다. 또한 2 mM $Mg^{2+}$ 이온과 100 mM $Cl^-$ 이온의 첨가는 MINPP 효소의 기질 2,3-BPG에 대한 효소활성에 역시 영향을 주지 않았다.

Keywords

References

  1. Ali, N., Craxton, A. and Shears, S. B. 1993. Hepatic Ins (1,3,4,5) $P_4$ 3-phosphatase is compartmentalized inside endoplasmic reticulum. J Biol. Chem. 268:6161-6167.
  2. Caffrey, J. J., Hidaka, K., Matsuda, M., Hirata, M. and Shears, S. B. 1999. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification. FEBS Lett. 442:99-104. https://doi.org/10.1016/S0014-5793(98)01636-6
  3. Casey, A. and Walsh, G. 2003. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour. Technol. 86:183-188. https://doi.org/10.1016/S0960-8524(02)00145-1
  4. Chi, H., Tiller, G. E., Dasouki, M. J., Romano, P. R., Wang, J., O’Keefe, R. J., Puzas, J. E., Rosier, R. N. and Reynolds, P. R. 1999. Multiple inositol polyphosphate phosphatase: Evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics 56:324-336. https://doi.org/10.1006/geno.1998.5736
  5. Cho, J., Choi, K., Darden, T., Reynolds, P. R., Petitte, J. N. and Shears, S. B. 2006. Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet’s “phosphate crisis”. J. Biotechnol. 126:248-259. https://doi.org/10.1016/j.jbiotec.2006.04.028
  6. Cho, J., King, J. S., Qian, X., Harwood, A. J. and Shears, S. B. 2008. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA 105:5998-6003. https://doi.org/10.1073/pnas.0710980105
  7. Choi, Y. M., Suh, H. J. and Kim J. M. 2001. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Prot. Chem. 20:287-292. https://doi.org/10.1023/A:1010945416862
  8. Cosgrove, D. J. 1966. The chemistry and biochemistry of inositol polyphosphates. Rev. Pure Appl. Chem 16:209-215.
  9. Craxton, A., Caffrey, J. J., Burkhart, W., Safrany, S. T. and Shears, S. B. 1997. Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem. J. 328:75-81. https://doi.org/10.1042/bj3280075
  10. Cregg, J. M., Cereghino, J. W., Shi, J. and Higgins, J. R. 2000. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16:23-52. https://doi.org/10.1385/MB:16:1:23
  11. Garel, M. C., Arous, N., Calvin, M. C. and Craescu, C. T. 1994. A recombinant bisphosphoglycerate mutase variant with acid phosphatase homology degrades 2,3-diphosphoglycerate. Proc. Natl. Acad. Sci. USA 91:3593-3597. https://doi.org/10.1073/pnas.91.9.3593
  12. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M. and Zelder, O. 2005. Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol. 68:588-597. https://doi.org/10.1007/s00253-005-0005-y
  13. Han, Y. and Lei, X. G. 1999. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 364:83-90. https://doi.org/10.1006/abbi.1999.1115
  14. Hidaka, K., Kanematsu, T., Caffrey, J. J., Takeuchi, H., Shears, S. B. and Hirata, M. 2003. The importance to chondrocyte differentiation of changes in expression of the multiple inositol polyphosphate phosphatase. Exp. Cell. Res. 290:254-264. https://doi.org/10.1016/S0014-4827(03)00337-9
  15. Kim, Y., Kim, H. K., Bae, K. S., Yu, J. H. and Oh, T. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 22:2-7. https://doi.org/10.1016/S0141-0229(97)00096-3
  16. Kim, Y. O., Kim, H. W., Lee, J. H, Kim, K. K. and Lee, S. J. 2006. Molecular cloning of the phytase gene from Citrobacter braakii and its expression in Saccharomyces cerevisiae. Biotechnol. Lett. 28:33-38. https://doi.org/10.1007/s10529-005-9684-9
  17. Lei, X. G. and Porres, J. M. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25:1787-1794. https://doi.org/10.1023/A:1026224101580
  18. Maenz, D. D. and Classen, H. L. 1998. Phytase activity in the small intestine brush border membrane of the chicken. Poultry Sci. 77:557-563. https://doi.org/10.1093/ps/77.4.557
  19. Rasmus, H. N., Fuglsang, C. C., Arleth, L. and Westh, P. 2006. Interrelationships of glycosylation and aggregation kinetics for Peniophora lycii phytase. Biochem. 45:5057-5066. https://doi.org/10.1021/bi0522955
  20. Torres, J., Domínguez, S., Cerdá, F. M., Obal, G., Mederos, A., Irvine, R. F., Dìaz, A. and Kremer, C. 2005. Solution behavior of myoinositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic / nuclear conditions. J Inorg. Biochem. 99:828-840. https://doi.org/10.1016/j.jinorgbio.2004.12.011
  21. Tuggle, C. K., Wang, O. and Couture, O. 2007. Advances in swine transcriptome. Int. J. Biol. Sci. 3:132-152.
  22. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M. and van Loon, A.P.G.M. 1999. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol. 65:367-373.