DOI QR코드

DOI QR Code

Microwave Irradiation as a Way to Reutilize the Recovered Struvite Slurry and to Enhance System Performance

회수된 MAP 슬러리의 재이용과 공정효율 향상을 위한 도구로서의 극초단파 조사

  • Cho, Joon-Hee (Department of Animal Life System, Kangwon National University) ;
  • Lee, Jin-Eui (Department of Animal Life System, Kangwon National University) ;
  • Ra, Chang-Six (Department of Animal Life System, Kangwon National University)
  • 조준희 (강원대학교 동물생명과학대학, 동물생명시스템학과) ;
  • 이진의 (강원대학교 동물생명과학대학, 동물생명시스템학과) ;
  • 라창식 (강원대학교 동물생명과학대학, 동물생명시스템학과)
  • Received : 2009.07.13
  • Accepted : 2009.08.14
  • Published : 2009.08.01

Abstract

The feasibility of reutilization of magnesium ammonium phosphate (MAP) or struvite slurry recovered from the process through microwave irradiation was studied in this experiment. For this purpose, 4 different operations were performed with or without Mg source addition and different levels of MAP recycled in a batch reactor. Dissolution rate of MAP, ${NH_4}^+$ elimination pattern and physicochemical changes of MAP during microwave irradiation were also studied. The result showed that only 33% orthophosphate ($PO_4-P$) and 27% $NH_4-N$ removal occurred without adding any external Mg source (run A), whereas 87% $PO_4-P$ and 40% $NH_4-N$ removed when 1.0 M ratio of $MgCl_2$ (run B) was added based on $PO_4-P$ in influent. Although the addition of 1.0 molar ratio of microwave irradiated MAP (Run C) removed lower $PO_4-P$ and $NH_4-N$ than 1.0 M $MgCl_2$ (run B), $PO_4-P$ removal was double when compared with no Mg addition (run A). Addition of half MAP and half $MgCl_2$ (run D) showed the similar removal efficiency (88% $PO_4-P$ and 35% $NH_4-N$) with sole $MgCl_2$ addition (run B). Based on these results, the reutilization of MAP irradiated by microwave would be a feasible way to enhance the removal efficiencies of N and P, as well as curtail the Mg chemical usage. Track study showed that $NH_4-N$ gradually increased at initial stage of microwave irradiation of MAP, and then started eliminating from liquor as temperature increased over $45^{\circ}C$. Dissolution rate of ${PO_4}^{-3}$ during microwave irradiation was proportional to the initial MAP concentration, having $0.0091x^{0.6373}$ mg/sec. It was found from the scanning electron microscope (SEM) study that physical structure of MAP crystal started breaking down into small cube granules within very short time by electromagnetic vibration force during microwave irradiation and then gradually melted down into solution.

회분식 반응조를 Mg원 첨가 방법이나 혹은 MAP을 재이용하는 조건이 서로 다른 4가지 상이한 조건하에서 운전하면서 공정으로부터 회수된 magnesium ammonium phosphate (MAP) 혹은 struvite 슬러리의 재이용 수단으로서의 극초단파조사 방법의 이용 가능성을 파악하였다. 또한 극초단파조사 동안의 MAP 용해율과 $NH_4-N$ 소실양상 및 MAP의 물리/화학적 변화를 분석하였다. Mg원을 첨가하지 않은 run A에서의 용해성 인과 암모니아성 질소의 제거율은 각각 33%와 27% 수준이었던 반면 유입수내 용해성 인 기준 동몰비의 Mg원을 첨가한 run B에서는 용해성 인과 암모니아성 질소의 제거율이 각각 87% 와 40% 수준으로 증가하였다. 극초단파를 조사한 MAP을 첨가한 run C의 경우, 비록 Mg원을 첨가한 run B에 비해 $PO_4-P$$NH_4-N$ 제거율이 낮았으나, Mg원을 첨가하지 않은 run A에 비해 $PO_4-P$의 제거율이 2배 정도 높아지는 결과를 보였다. Mg 원과 MAP을 각각 1/2씩 첨가한 run D에서의 $PO_4-P$$NH_4-N$ 제거효율은 각각 88%와 35% 수준으로 Mg원만을 1몰비로 첨가한 run B와 거의 유사한 효율을 나타내었다. 이러한 결과에 의거 극초단파로 처리한 후 MAP을 재이용하는 방법은 공정에서의 인과 질소의 제거율을 높임은 물론, Mg원 사용량을 감소시키는 이중효과가 있음을 알 수 있었다. MAP을 극초단파로 조사하면서 $NH_4-N$ 농도변화를 관찰한 결과 극초단파조사 초기단계에서는 $NH_4-N$ 농도가 점차 증가하다가 온도가 $45^{\circ}C$ 이상으로 상승함에 따라 용액으로부터 $NH_4-N$가 소실되기 시작하여 감소하였으며 극초단파조사 동안의 $PO_4-P$ 용해율은 초기 MAP 농도에 비례하면서 $0.0091x^{0.6373}$ mg/sec의 상관관계를 갖는 것으로 분석되었다. 또한 주사전자현미경을 이용한 극초단파조사 동안의 MAP 크리스탈 구조변화실험 결과 극초단파 조사시 전자기적 진동력에 의해 단시간내에 MAP 크리스탈 구조가 작은 입방체 과립형태로 부숴지고 극초단파 조사가 지속됨에 따라 점차 용액내로 녹음을 알 수 있었다.

Keywords

References

  1. Ahn, P. B., Kim, J. H. and Hwang, J. S. 2004. Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Sci. Technol. 50(9):17-23.
  2. Bi, X. Y., Wang, P., Jiang, I. H., Xu, H. Y., Shi, S. J. and Huang, J. L. 2007. Treatment of phenol wastewater by microwave-induced $ClO_2-CuOx/Al_2O_3$ catalytic oxidation process. J. Environ. Sci. 19:1510-1515. https://doi.org/10.1016/S1001-0742(07)60246-0
  3. Bonmati, A. and Flotats, X. 2003. Air stripping of ammonia from pig slurry: characterization and feasibility as a pre-of post-treatment to mesophilic anaerobic digestion. Waste Manag. 23:261-272. https://doi.org/10.1016/S0956-053X(02)00144-7
  4. Chan, W. I., Wong, W. T., Liao, P. H. and Lo, K. V. 2007. Sewage sludge nutrient solubilization using a single-stage microwave treatment. J. Environ. Sci. Heal., Part-A. 42(1): 59-63. https://doi.org/10.1080/10934520601015735
  5. Chirmuley, D. G. 1994. Struvite precipitation in WWTPs: Causes and solutions. Water (J. Austr. Water Assoc.) December. 21-23.
  6. Eskicioglu, C., Terzian, N., Kennedy, K. J., Drostea, R. L. and Hamoda, M. 2007. A thermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 41:2457-2466. https://doi.org/10.1016/j.watres.2007.03.008
  7. Jaffer, Y., Clark, T. A., Pearce, P. and Parsons, S. A. 2002. Potential phosphorus recovery by struvite formation. Water Res. 36(7):1834-1842. https://doi.org/10.1016/S0043-1354(01)00391-8
  8. Jeong, B. Y., Song, S. H., Baek, K. W., Cho, I. H. and Hwang, T. S. 2006. Preparation and properties of heterogeneous cation exchange membrane for recovery of ammonium ion from waste water. Polymer (Korea). 30:486-491.
  9. Kim, K. W., Kim, Y. J., Kim, I. T., Park, G. I. and Lee, E. H. 2006. Electrochemical conversion characteristics of ammonia to nitrogen. Water Res. 40:1431-1441. https://doi.org/10.1016/j.watres.2006.01.042
  10. Lee, S. I., Weon, S. Y., Lee, C. W. and Koopman, B. 2003. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere. 51:265-271. https://doi.org/10.1016/S0045-6535(02)00807-X
  11. Li, X. Z., Zhao, Q. L. and Hao, X. D. 1999. Ammonium removal from landfill leachate by chemical precipitation. Waste Manag. 19:409-415. https://doi.org/10.1016/S0956-053X(99)00148-8
  12. Liao, P. H., Wong, W. T. and Lo, K. V. 2005. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate. J. Environ. Sci. Heal., Part-A. 40(9):1753-1761. https://doi.org/10.1081/ESE-200068038
  13. Lin, L, Yuan, S., Chen, J., Xu, Z. and Lu, X. 2009. Removal of ammonia nitrogen in wastewater by microwave radiation. J. hazard. Mater. 161 (2-3):1063-1068. https://doi.org/10.1016/j.jhazmat.2008.04.053
  14. Martin, D. I., Margaritescu, I., Cirstea, E., Togoe, I., Ighigeanu, D., Nemtanu, M. R., Oproiu, C. and Iacob, N. 2005. Application of accelerated electron beam and microwave irradiation to biological waste treatment. Vacuum. 77(4):501-506. https://doi.org/10.1016/j.vacuum.2004.09.019
  15. Menendez, J. A., Inguanzo, M. and Pis, J. J. 2002. Microwave induced pyrolysis of sewage sludge. Water Res. 36:3261-3264. https://doi.org/10.1016/S0043-1354(02)00017-9
  16. Munch, E. V. and Barr, K. 2001. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res. 35(1):151-159. https://doi.org/10.1016/S0043-1354(00)00236-0
  17. Ponne, C. T. and Bartels, P. V. 1995. Interaction of electromagnetic energy with biological material-relation to food processing. Radiation Phys. Chem. 45(4):591-607. https://doi.org/10.1016/0969-806X(94)00073-S
  18. Qureshi, A., Lo, K. V. and Liao, P. H. 2008. Microwave treatment and struvite recovery potential of dairy manure. J. Environ. Sci. Heal., Part-B, 43(4):350-357. https://doi.org/10.1080/03601230801941709
  19. Saillard, R., Poux, M., Berlan, J., Audhuy-Peaudecerf, M. 1995. Microwave heating of organic solvents: thermal effects and field modelling. Tetrahedron 51(14):4033-4042. https://doi.org/10.1016/0040-4020(95)00144-W
  20. Sanz, J., Lombrana, J. I., Luis, A. M. D., Ortueta, M. and Varona, F. 2003. Microwave and Fenton’s reagent oxidation of wastewater. Environ. Chem. Lett. 1:45-50. https://doi.org/10.1007/s10311-002-0007-2
  21. Suzuki, K., Tanaka, Y., Kuroda, K., Hanajima, D. and Fukumoto, Y. 2005. Recovery of phosphorous from swine wastewater through crystallization. Bioresour. Technol. 96(14): 1544-1550. https://doi.org/10.1016/j.biortech.2004.12.017
  22. Welander, U., Henrysson, T. and Welander, T. 1998. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res. 32:1564-1570. https://doi.org/10.1016/S0043-1354(97)00351-5
  23. Wojciechowska, E. 2005. Application of microwaves for sewage sludge conditioning. Water Res. 39(19):4749-4754. https://doi.org/10.1016/j.watres.2005.09.032
  24. Wong, W. T., Chan, W. I., Liao, P. H. and Lo, K. V. 2006. A hydrogen peroxide / microwave advanced oxidation process for sewage sludge treatment. J. Environ. Sci. Heal., Part-A. 41 (11):2623-2633. https://doi.org/10.1080/10934520600928086
  25. Yetilmezsoy, K. and Zengin, Z. S. 2009. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J. Hazard. Mater. 166:260-269. https://doi.org/10.1016/j.jhazmat.2008.11.025
  26. Zhang, T., Lili, Ding, L. and Ren, H. 2009. Pretreatment of ammonium removal from landfill leachate by chemical precipitation. J. Hazard. Mater. 166:911-915. https://doi.org/10.1016/j.jhazmat.2008.11.101

Cited by

  1. pH Control during the Struvite Precipitation Process of Wastewaters vol.07, pp.16, 2015, https://doi.org/10.4236/jwarp.2015.716113
  2. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen vol.28, pp.7, 2015, https://doi.org/10.5713/ajas.14.0679
  3. -N and refractory organics through sequential heterogeneous Fenton oxidation process and struvite precipitation: kinetic study vol.6, pp.5, 2016, https://doi.org/10.1039/C5RA20492E