DOI QR코드

DOI QR Code

Association Study Between Polymorphisms of Inositol 1,4,5-triphosphate Receptor Type 1 (IP3R1) Gene and Carcass Traits in Korean Cattle (Hanwoo)

한우 Inositol 1,4,5-triphosphate Receptor Type 1 (IP3R1) 유전자의 다형성 및 형질 관련성 분석

  • 김남국 (농촌진흥청 국립축산과학원) ;
  • 김건석 (농촌진흥청 국립축산과학원) ;
  • 정유성 (농촌진흥청 국립축산과학원) ;
  • 문희주 (농촌진흥청 국립축산과학원) ;
  • 조용민 (농촌진흥청 국립축산과학원) ;
  • 윤두학 (농촌진흥청 국립축산과학원)
  • Received : 2009.07.17
  • Accepted : 2009.08.11
  • Published : 2009.08.01

Abstract

Inositol 1,4,5-triphosphate receptor type 1 (IP3R1) is a $Ca^{2+}$ release channel that responds to the second messenger IP3 and that modulates diverse cellular functions such as contraction/excitation, secretion, gene expression and cellular growth. We discovered single nucleotide polymorphisms (SNPs) within IP3R1 gene and analyzed associations between gene polymorphisms and carcass traits in Korean cattle (Hanwoo) in order to develop novel DNA markers at genomic level. Three SNPs were detected at the position of g.1428617A>G, g.1418843C>T and g.1414377C>T with 24 unrelated Hanwoo samples by direct sequencing of the PCR products. We found that genotype of g.1414377C>T SNP was associated with live weight (P<0.05) and carcass weight (P<0.01) using the general linear model of SAS package. These results suggest that polymorphism of IP3R1 gene was associated with weight-related traits in Hanwoo.

본 연구는 한우 inositol 1,4,5-triphosphate receptor type1(IP3R1) 유전자를 대상으로 SNP를 발굴하고, 도체형질과의 관련성 분석을 위하여 수행하였다. PCR 및 염기서열 결정법을 통해 IP3R1 유전자내 3개의 SNP를 발굴하였고, 이중 intron 29에 위치하는 SNP의 경우 미 보고된 신규 SNP로 확인되었다. 발굴된 3개의 SNP를 대상으로 표현형 기록치를 보유한 후대검정우 583두에 대하여 유전자형 분석 및 관련성 분석을 수행하였다. 분석결과 3개의 SNP 중 g.1428617A>G SNP가 생시체중(P<0.05) 및 도체중(P<0.01)과 유의적인 상관관계가 있음을 확인할 수 있었다. 이러한 결과는 추후 한우 개량을 위한 유전자 마커로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Casas, E., Keele, J. W., Shackelford, S. D., Koohmaraie, M. and Stone, R. T. 2003. Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35:2-6. https://doi.org/10.1046/j.1365-2052.2003.01067.x
  2. Chasman, D. and Adams, R. M. 2001. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J. Mol. Biol. 307:683-706. https://doi.org/10.1006/jmbi.2001.4510
  3. Cheong, H. S., Yoon, D., Kim, L. H., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cho, H., Chung, E. R., Cheong, I. and Shin, H. D. 2007. Titin-cap (TCAP) polymorphisms associated with marbling score of beef. Meat Sci. 77:257-263. https://doi.org/10.1016/j.meatsci.2007.03.014
  4. Cho, S., Park, T. S., Yoon, D., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C., Kim, H. and Shin, H. D. 2008. Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB reports. 41:29-34. https://doi.org/10.5483/BMBRep.2008.41.1.029
  5. Gutiérrez-Gil, B., Wiener, P., Nute, G. R., Burton, D., Gill, J. L., Wood, J. D. and Williams, J. L. 2007. Detection of quantitative trait loci for meat quality traits in cattle. Anim. Genet. 39:51-61. https://doi.org/10.1111/j.1365-2052.2007.01682.x
  6. Hiendleder, S., Thomsen, H., Reinsch, N., Bennewita, J., Leyhe-Horn, B., Looft, C., Xu, N., Medjugorac, I., Russ, I., Kuhn, C., Brockmann, G. A., Blumel, J., Brenig, B., Reinhardt, F., Reents, R., Averdunk, G., Schwerin, M., Forster, M., Kalm, E. and Erhardt, G. 2003. Mapping of QTL for body conformation and behavior in cattle. J. Hered. 94: 496-506. https://doi.org/10.1093/jhered/esg090
  7. Hollung, K., Veiseth, E., Jia, X., Færgestad, E. M. and Hildrum, K. I. 2007. Application of proteomics to understand the molecular mechanism behind meat quality. Meat Sci. 77:97-104. https://doi.org/10.1016/j.meatsci.2007.03.018
  8. Kawase, T., Akatsuka, Y., Torikai, H., Morishima, S., Oka, A., Tsujimura, A., Miyazaki, M., Tsujimura, K., Miyamura, K., Ogawa, S., Inoko, H., Morishima, Y., Kodera, Y., Kuzushima, K. and Takahashi, T. 2007. Alternative splicing due to intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood. 110:1055-1063. https://doi.org/10.1182/blood-2007-02-075911
  9. Kim, N. K., Cho, S., Lee, S. H., Park, H. R., Lee, C. S., Cho, Y. M., Choy, Y. H., Yoon, D., Im, S. K. and Park, E. W. 2008. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 80: 1068-1073. https://doi.org/10.1016/j.meatsci.2008.04.027
  10. Kong, H. S., Oh, J. D., Lee, J. H., Yoon, D. H., Choi, Y. H., Cho, B. W., Lee, H. K. and Jeon, G. J. 2007. Association of sequence variations in DGAT 1 gene with economic traits in Hanwoo (Korea cattle). Asian-Aust. J. Anim. Sci. 20:817-820.
  11. Lee, S. H., Park, E. W., Cho, Y. M., Kim, S. K., Lee, J. H., Jeon, J. T., Lee, C. S., Im, S. K., Oh, S. J., Thompson, J. M. and Yoon, D. 2007. Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of hanwoo steers. J. Biochem. Mol. Biol. 40:757-64. https://doi.org/10.5483/BMBRep.2007.40.5.757
  12. Liu, Z., Sun, H. X., Zhang, Y. W., Li, Y. F., Zuo, J., Meng, Y. and Fang, F. D. 2004. Effect of SNPs in protein kinase Cz gene on gene expression in the reporter gene detection system. World J. Gastroenterol. 10: 2357-2360.
  13. MacLennan, D. H. and Phillips, M. S. 1992. Malignant hyperthermia. Science 256:789-794. https://doi.org/10.1126/science.1589759
  14. 14. Patterson, R. L., Boehning, D. and Snyder, S. H. 2004. Inositol 1,4,5-triphosphate receptors as signal integrators. Annu. Rev. Biochem. 73:437-465. https://doi.org/10.1146/annurev.biochem.73.071403.161303
  15. Qu, H. Q., Marchand, L., Szymborski, A., Grabs, R. and Polychronakos, C. 2008. The association between type 1 deabetes and the ITPR3 gene polymorphism due to linkage disequilibrium with HLA class II. Genes Immun. 9:264-266. https://doi.org/10.1038/gene.2008.12
  16. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W 3rd., Kondrashov, A. S. and Bork, P. 2001. Prediction of deleterious human alleles. Hum. Mol. Genet. 10:591-597. https://doi.org/10.1093/hmg/10.6.591
  17. Takasuga, A., Watanabe, T., Mizoguchi, Y., Hirano, T., Ihara, N., Takano, A., Yokouch, K., Fujikawa, A., Chiba, K., Kobayashi, N., Tatsuda, K., Oe, T., Furukawa-Kuroiwa, M., Nishimura-Abe, A., Fujita, T., Inoue, K., Mizoshita, K., Ogino, A. and Sugimoto, Y. 2007. Identification of bovine QTL for growth and carcass traits in Japanese black cattle by replication and identical-by-descent mapping. Mamm. Genome. 18:125-136. https://doi.org/10.1007/s00335-006-0096-5
  18. Tshipuliso, N. O. M., Alexander, L. J., Geary, T. W., Snelling, V. M., Rule, D. C., Koltes, J. E., Mote, B. E. and MacNeil, M. D. 2008. Mapping QTL for fatty acid composition that segregates between the Japanese black and Limousin cattles. South African J. Anim. Sci. 38:126-130.
  19. Wang, Y. H., Reverter, A., Tan, S. H., Jager, N. D., Eang, R., McWilliam, S. M., Cafe, L. M., Greenwood, P. L. and Lehnert, S. A. 2009. Gene expression patterns during intramuscular fat development in cattle. J. Ainm. Sci. 87:119-130.
  20. 이한주, 이승환, 조용민, 윤호백, 전봉균, 오성종, 권무식, 윤 두학. 2004. 한우 lipoprotein lipase 유전자 intron 5번의 polymorphism과 경제 형질과의 관련성 분석. 한국동물자원과 학회지. 46:947-956. https://doi.org/10.5187/JAST.2004.46.6.947

Cited by

  1. Application of DNA marker related with marbling score in Hanwoo cow vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.733
  2. Validation of DNA Markers for Carcass Traits with Commercial Hanwoo Population vol.48, pp.2, 2014, https://doi.org/10.14397/jals.2014.48.2.133