
Journal of the Korean Data & 한국데이터정보과학회지
Information Science Society
2009, 20(3), 601–614

An objective Bayesian analysis for
multiple step stress accelerated life tests

Dal Ho Kim1 · Sang Gil Kang2 · Woo Dong Lee3

1Department of Statistics, Kyungpook National University
2Department of Applied Statistics, Sangji University

3Department of Asset Management, Daegu Haany University
Received 26 March 2009, revised 25 April 2009, accepted 3 May 2009

Abstract
This paper derives noninformative priors for scale parameter of exponential distri-

bution when the data are collected in multiple step stress accelerated life tests.

We find the objective priors for this model and show that the reference prior satisfies
first order matching criterion. Also, we show that there exists no second order matching
prior. Some simulation results are given and using artificial data, we perform Bayesian
analysis for proposed priors.

Keywords: Bayesian analysis, Jeffreys’ prior, multiple step accelerated life test, proba-
bility matching prior, reference prior.

1. Introduction

In many reliability studies, the life tests were made under various environmental condi-
tions. But for extremely reliable units it is in general impossible to make life tests under the
usual conditions because the life times of units under the usual conditions may tend to be
large and then the testing time may be very long. As a common approach to overcome this
problem, the accelerated life tests (ALTs) are widely used, in which samples of units are
subjected to conditions of greater stress than the usual conditions. For example, accelerated
test conditions involve higher than usual temperature, voltage, pressure, vibration, cycling
rate, load, etc., or some combination of them.

The step stress ALT is commonly used in engineering practice. We interest the step stress
ALT wherein the stress on unfailed units is allowed to change at preassigned times until
they fail.

The existing literature on analysis of step-stress ALT centered around three types of
models.
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DeGroot and Goel (1979) proposed tampered random variables (TRV) model which the
effect of changing the stress from s1 to s2 ( s1 < s2) is to multiply the remaining life of the
unit at changing time τ (which they called it as tampering point) by some unknown factor,
called tampering coefficient, α (0 < α < 1). The proposed model is

Y =
{
X X ≤ τ,
τ + α(X − τ) X > τ.

(1.1)

There is an another model for analyzing the accelerated life test data, which was proposed
by Bhattacharyya and Soejoeti (1989). They assumed that the effect of changing the stress
is to multiply the initial failure rate function λ1(y) by an unknown factor α subsequent to
the change point τ . Denoting the failure rate function of the step stress life length by λ∗(y),
the tampered failure rate (TFR) model is defined as

λ∗(y) =
{
λ1(y) y ≤ τ,
αλ1(y) y > τ.

(1.2)

Nelson (1980) proposed cumulative exposure (CE) model as follows: Let F ∗ be the cu-
mulative distribution function of the step stress data which can be specified by Fi(y) =
F (y|si), i = 1, 2, where F (y|si) is the cumulative distribution function of life length under
the constant stress setting si. The CE model is defined by

F ∗(y) =
{
F1(y) y ≤ τ,
F2(ν1 + y − τ) y > τ,

(1.3)

where ν1 is defined to be the solution of the equation F2(ν1) = F1(τ).
Bhattacharyya and Soejoeti (1989) indicated that the TRV, CE and TFR models are

identical in the sense that TRV can be expressed by the other models through reparameter-
ization, when distribution under use stress is exponential.

For applications of ALT model to the real data, multiple ( a model with more than two
tampering points) step stress ALT model will be applicable to the extremely reliable items.
There have been several works extending two step stress (or simple step stress) ALT model
to multiple step stress model. Typical examples are Shaked and Singpurwalla (1983) and
Madi (1993).

The papers mentioned above except Degroot and Geol (1976) solved the estimation prob-
lem in step stress ALT models using the classical or nonparametric methods. From a
Bayesian point of view, DeGroot and Goel (1979) studied the Bayesian estimation of param-
eters and optimal design of the model (1.1) when the lifetime under use stress is exponential
distribution. They considered two independent gamma priors for parameter estimation.

Owing to the lack of prior knowledge about parameters or lack of time to accumulate the
information about the model, there may be an inevitable situation to use noninformative
priors. The most commonly used noninformative prior is Jeffreys’ (1961) prior, which is
proportional to the positive square root of the determinant of the Fisher information matrix.
Jeffreys’ prior plays a major role in many one parameter models, but Jeffreys’ prior frequently
runs into serious difficulties in the presence of nuisance parameters. Jeffreys’ prior does not
hold invariant property under reparameterization and does not match frequentist coverage
probability.
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In recent years, many efforts have been done for finding noninformative priors such as
reference or probability matching prior in Bayesian analysis. There has been a great deal of
studies for finding noninformative priors.

Welch and Peers (1963), Peers (1965) and Stein (1985) found a prior which requires the
frequentist coverage probability of the posterior region of a real-valued parametric function
to match the normal level with a remainder of o(n−

1
2 ), where n is the sample size. Tibshirani

(1989) reconsidered the case when the real valued parameter of interest is orthogonal to the
nuisance parameter vector. These priors, as usually referred to as ‘first order’ matching
priors, were further studied in Datta and Ghosh (1995a, 1995b, 1996).

Recently, Ghosh and Mukerjee (1997) developed a ‘second order’, that is, o(n−1), matching
prior. They extend the finding in Mukerjee and Dey (1993) to the case of multiple nuisance
parameters based on quantiles, and also develop a second order matching prior based on
distribution function.

On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo (1989, 1992)
extended Bernardo’s (1979) reference prior approach, giving a general algorithm to derive
a reference prior by splitting the parameters into several groups according to their order
of inferential importance. This approach is very successful in various practical problems.
Quite often reference priors satisfy the matching criterion described earlier.

In this paper, we will generalize two step stress TRV model (1.1) to multiple step stress
TRV model.

For the Bayesian analysis, we derive the reference prior and matching prior for the scale
parameter when the lifetime distribution under normal stress is exponential. Through the
orthogonal transformation in the sense of Cox and Reid (1987), we first find the orthogonal
reparameterization for scale parameter and then find reference prior and matching prior.
We show that the proposed matching prior is the first order matching prior and that there
exists no second order matching for multiple step stress ALT model. We show that, under
the proposed noninformative priors, the joint posterior for the parameters is proper. And
some simulation results and example are given.

2. Multiple step stress accelerated life test model

Consider the realistic situation of accelerated life testing where we continue increasing
the stress level on the unfailed items over a preassigned number k(≥ 1) of times. And we
assume that the lifetime distribution under normal stress follows exponential distribution
with parameter θ of which the probability density function (pdf) is given by

f1(x|θ) = θ exp{−θx}, 0 < x <∞, 0 < θ <∞. (2.1)

When k ≥ 2, we call it as a multiple step stress ALT model. Now, we generalize the simple
step stress TRV model (1.1) to a multiple step stress TRV model. Let

0 < τ1 < τ2 < · · · < τk <∞

be the k’s tampering points. Starting to the normal stress level s0, at the tampering point τ1,
we raise stress level to s1(> s0), and so on. According to the stress level si, i = 1, 2, · · · , k,
there is tampering coefficient αi which represents the effect of stress change. Let Y be the
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lifetime under multiple step stress pattern, then, the multiple step stress TRV model can be
described as follows.

Y =



X, if X ≤ τ1,
X −

Pl−1
i=1(τi−τi−1)Qi−1

j=0 αj∏l−1
j=0 α

−1
j

+ τl−1, if
Pl−1
i=1(τi−τi−1)Qi−1

j=0 αj
< X ≤

Pl
i=1(τi−τi−1)Qi−1

j=0 αj
,

l = 2, · · · , k,
X −

∑k
i=1(τi − τi−1)

∏i−1
j=0 α

−1
j∏k

j=0 α
−1
j

+ τk, if X >
Pk
i=1(τi−τi−1)Qi−1

j=0 αj
,

(2.2)

where α0 ≡ 1, τ0 ≡ 0, 0 < αi < 1, i = 1, · · · , k and X is exponentially distributed random
variable with density (2.1).

If we denote F1(y|θ) as the distribution function of X, then the distribution function F
of Y is given by

F (y|θ, α) =


F1(y|θ), y ≤ τ1,
F1(

Pl−1
i=1(τi−τi−1)Qi−1

j=0 αj
+ (y−τl−1)Ql−1

j=0 αj
|θ), τl−1 < y ≤ τl, l = 2, · · · , k,

F1(
Pk
i=1(τi−τi−1)Qi−1

j=0 αj
+ (y−τk)Qk

j=0 αj
|θ), y > τk,

(2.3)

where α = (α0, α1, · · · , αk).
The probability density function f(y|θ, α) of Y is given by

f(y|θ, α) =



θ exp {−θy} , y ≤ τ1,

θQl−1
j=0 αj

e
−θ

" Pl−1
i=1(τi−τi−1)Qi−1

j=0 αj
+

(y−τl−1)Ql−1
j=0 αj

#
, τl−1 < y ≤ τl, l = 2, · · · , k,

θQk
j=0 αj

e
−θ

" Pk
i=1(τi−τi−1)Qi−1

j=0 αj
+

(y−τk)Qk
j=0 αj

#
, y > τk,

(2.4)

where 0 < θ <∞ and 0 < αi < 1, i = 1, 2, · · · , k.
Let δ1 = I(y ≤ τ1), δl = I(τl−1 < y ≤ τl), l = 2, · · · , k, and δk+1 = I(y > τk), where I is

indicator function. Then
∑k+1
i=1 δi = 1. And the likelihood function per one observation y is

given by,

L(θ, α|y) =
θe−θyδ1∏k

l=1 α
Pk+1
i=l+1 δi

l

exp

{
−θ

k+1∑
l=2

δl

[∑l−1
i=1(τi − τi−1)∏i−1

j=0 αj
+

(y − τl−1)∏l−1
j=0 αj

]}
. (2.5)

The log-likelihood function for one observation is

L(θ, α|y) = log θ−
k∑
l=2

logαl
k+1∑
i=l+1

δi−θyδ1−θ
k+1∑
l=2

δl

[∑l−1
i=1(τi − τi−1)∏i−1

j=0 αj
+

(y − τl−1)∏l−1
j=0 αj

]
. (2.6)

Usually, one purpose of the ALTs is the information about the parameter under the normal
stress level. In our multiple step stress TRV model, θ, which is the failure rate at the normal
stress, is more important parameter than the others.
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Now, we consider the reparameterization of the original parameters to accomplish the
parameter orthogonality in the sense of Cox and Reid (1987). To do this, let ω1 = θ and
ωl = θ/

∏l−1
j=1αj , l = 2, · · · , k+1. Then the log-likelihood function under reparameterization

is given by

L(ω|y) =
k+1∑
l=1

δl logωl − ω1yδ1 −
k+1∑
l=2

δl

[
l−1∑
i=1

(τi − τi−1)ωi + (y − τl−1)ωl

]
, (2.7)

where ω = (ω1, · · · , ωk+1) ∈ Θω, Θω = {ω|0 < ω1 < ω2 < ω3 < · · · < ωk+1 <∞}.
From the above reparameterized log-likelihood function (2.7), one can find the Fisher

information matrix for the ω.
Let Iω be the Fisher information matrix of ω. Then the information matrix Iω is a diagonal

matrix with elements Ii, i = 1, 2, · · · , k + 1. The elements are given by

I1 =
1
ω2

1

(1− exp {−ω1τ1}) ,

Il =
1
ω2
l

exp

(
−
l−1∑
i=1

(τi − τi−1)ωi

)
(1− exp {−(τl − τl−1)ωl}) , l = 2, 3, · · · , k,

and

Ik+1 =
1

ω2
k+1

exp

(
−

k∑
i=1

(τi − τi−1)ωi

)
.

3. Noninformative priors

In this section, we will derive the noninformative priors in multiple step stress TRV model.
From the information matrix Iω, one can find Jeffrey’s prior for ω as follows.

πJ(ω) ∝

(
k+1∏
l=1

ω−1
l

)

×

[(
k∏
l=1

(1− exp{−(τl − τl−1)ωl})

)(
k+1∏
l=2

exp{−
l−1∑
i=1

(τi − τi−1)ωi}

)]1/2

, (3.1)

where ω ∈ Θω. Using the identity

k+1∑
l=2

l−1∑
i=1

(τi − τi−1)ωi =
k∑
l=1

(k − l + 1)(τl − τl−1)ωl,

Jeffrey’s prior can be rewritten as

πJ(ω) ∝

∏k
l=1(1− exp{−(τl − τl−1)ωl})1/2 exp

{
− 1

2

(∑k
l=1(k − l + 1)(τl − τl−1)ωl

)}
∏k+1
l=1 ωl

.
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It is well known that the prior (3.1) does not meet the nominal level coverage probability in
case of the presence of nuisance parameters. Also, the prior does not satisfy the invariance
property under transformation. To remedy these problems, we will find a reference prior
and a matching prior when ω1 is a parameter of interest.

We introduce the brief concept of a matching prior. For a prior π, let θ1−α
1 (π; Y) be a

percentile of the posterior distribution of θ1, that is,

Pπ{θ1 ≤ θ1−α
1 (π; Y)|Y} = 1− α. (3.2)

We want to find priors which satisfy

Pπ{θ1 ≤ θ1−α
1 (π; Y)|θ, α} = 1− α+ o(n−

u
2 ) (3.3)

for some u > 0, as n goes to∞. Priors π satisfying (3.3) are called matching priors. If u = 1,
then π is called a first order matching prior, if u = 2, π is called a second order matching
prior.

Now, we want to find a matching prior when the parameter of interest is ω1. Denote
ω(2) = (ω2, · · · , ωk+1) as a nuisance parameters. Based on the work of Tibshirani (1989),
the first order probability priors, when the parameter of interest is ω1, is given by,

πM (ω) ∝ ω−1
1 (1− exp{−ω1τ1})1/2

d(ω(2)), (3.4)

where d(·) is an arbitrary differentiable function in its arguments. Clearly, the Jeffrey’s prior
(3.1) is not the first order matching prior.

The class of priors given in (3.4) is large, and it may be necessary to narrow down this
class of priors. Mukerjee and Ghosh (1997) suggested the second order matching prior which
give more accurate frequentist coverage probability than first order matching prior. They
showed that a second order probability matching prior is of the form (3.4), and d(ω(2)) must
satisfy the following differential equation,

1
6
d(ω(2))

∂

∂ω1

[
(I−

3
2

1 )L1,1,1

]
+
k+1∑
ν=2

k+1∑
s=2

∂

∂ων

{
I
− 1

2
1 L11s(Isν)d(ω(2))

}
= 0, (3.5)

where

L1,1,1 = E

[(
∂L(ω|y)
∂ω1

)3
]
,

L11s = E

[
∂3L(ω|y)
∂ω2

1∂ωs

]
,

and Isν is the (s, ν)-th element of the inverse of Fisher information matrix.
It can be easily verified that , for s = 2, 3, · · · , k + 1,

∂3L(ω|y)
∂ω2

1∂ωs
= 0,

and Isν = 0, s 6= ν. Hence the second term in equation (3.5) is 0.
The only way which the prior (3.4) satisfies the second order matching condition (3.5)

is that (I−
3
2

1 )L1,1,1 is a function of ω(2) or a constant. To verify that whether the second
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order matching criterion is satisfied or not, we compute L1,1,1 in equation (3.5). From the
log-likelihood function (2.7),

∂L(ω|y)
∂ω1

=
δ1
ω1
− yδ1 − τ1(1− δ1).

Then,

L1,1,1 = E
[(
δ1(ω−1

1 − y)− τ1(1− δ1)
)3]

= E
[(
δ1(ω−1

1 − y)
)3]− τ3

1E [1− δ1] .

The second term in the above equation is

τ3
1E [1− δ1] = τ3

1 exp{−τ1ω1},

and the first term can be expanded as the following equation :

E
[(
δ1(ω−1

1 − y)
)3]

= ω−3
1 E[δ1]− E[δ1Y 3]− 3ω−2

1 E[δ1Y ] + 3ω−1
1 E[δ1Y 2].

The expectations in the above equation are calculated to be

E[δ1Y ] =
∫ τ1

0

yω1 exp{−ω1y}dy

= −τ1 exp{−ω1τ1}+ ω−1
1 (1− exp{−ω1τ1}),

E[δ1Y 2] =
∫ τ1

0

y2ω1 exp{−ω1y}dy

= −τ2
1 exp{−ω1τ1}+ 2ω−2

1 (1− exp{−ω1τ1})− 2ω−1
1 τ1 exp{−ω1τ1}

and

E[δ1Y 3] =
∫ τ1

0

y2ω1 exp{−ω1y}dy

= −τ3
1 exp{−ω1τ1}+ 6ω−3

1 (1− exp{−ω1τ1})− 6ω−2
1 τ1 exp{−ω1τ1}

−3ω−1
1 τ2

1 exp{−ω1τ1}.

Hence,
L1,1,1 = 3ω−2

1 τ1 exp{−ω1τ1} − 2ω−3
1 (1− exp{−ω1τ1}).

So,

I
− 3

2
1 × L1,1,1 = 3ω1τ1 exp{−ω1τ1}(1− exp{−ω1τ1})−

3
2 − 2(1− exp{−ω1τ1})

1
2 . (3.6)

The equation (3.6) is not a function of ω(2) or a constant. The second order matching prior
does not exist in this case.

Berger and Bernardo (1992a) developed the algorithm to find a reference prior. And Datta
and Ghosh (1995) proposed the method of developing reference priors when the orthogonality
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of the parameters is satisfied. In our case, ω1 is of more inferential importance than ω(2),
the one at a time reference prior is given by

πR(ω) ∝

(
k+1∏
i=1

ωi

)−1 [ k∏
i=1

(1− exp{−ωi(τi − τi−1)})

]1/2

, (3.7)

where ω ∈ Θω. One can find the fact that this prior is also the first order matching prior.

4. Posterior analysis

Suppose that y1, y2, · · · , yn is random sample from pdf (2.4). Then the likelihood function
of (θ, α) is given by

L(θ, α|y) =
n∏
v=1

f(yv|θ, α) = θn
k∏
l=1

α
−

Pn
v=1

Pk+1
i=l+1 δ

v
i

l

× exp

−θ n∑
v=1

δv1yv − θ
n∑
v=1

k+1∑
l=2

δvl {
l−1∑
i=1

(τi − τi−1)
i−1∏
j=0

α−1
j + (yv − τl−1)

l−1∏
j=0

α−1
j }

 ,
where δv1 = I(yv ≤ τ1), δvl = I(τl−1 < yv ≤ τl), l = 2, 3, · · · , k and δvk+1 = I(yv > τk).
Let m1 =

∑n
v=1 δ

v
1 be the number of observations failed until τ1, let ml =

∑n
v=1 δ

v
l be the

number of observations failed between τl−1 and τl, l = 2, · · · , k, and let mk+1 =
∑n
v=1 δ

v
k+1

be the number of observations failed beyond τk. Then,
n∑
v=1

k+1∑
i=l+1

δvi =
k+1∑
i=l+1

mi = n−
l∑
i=1

mi.

Let

V (1) =
n∑
v=1

δv1yv,

and, for l = 2, 3, · · · , k + 1,

V (l) =
n∑
v=1

δvl (yv − τl−1).

Under the reparametrization, the above likelihood function is

L(ω|y) =
k+1∏
l=1

ωmll exp{−ω1V
(1) −

k+1∑
l=2

ml

l−1∑
i=1

(τi − τi−1)ωi −
k+1∑
l=2

ωlV
(l)}. (4.1)

Combining the above likelihood (4.1) and the Jeffrey’s prior (3.1), one can obtain the joint
posterior pdf of ω as follows:

πJ( ω |y) ∝

(
k+1∏
l=1

ωml−1
l

)(
k∏
l=1

(1− exp{−(τl − τl−1)ωl})1/2

)

× exp

{
−

k∑
l=1

ωl

(
V (l) + (τl − τl−1)(

k+1∑
i=l+1

mi +
(k − l + 1)

2
)

)
− ωk+1V

(k+1)

}
.(4.2)
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The propriety of the above joint posterior is proved in the next theorem.

Theorem 4.1 The joint posterior (4.2) is proper, if ml > 0, l = 1, 2, · · · , k + 1.

Proof :∫
Θω

πJ(ω|y)dω

=
∫ ∞

0

ωm1−1
1 (1− e−ω1τ1)

1
2 e−ω1( 1

2kτ1+V (1)+τ1
Pk+1
i=2 mi)

×
∫ ∞
ω1

ωm2−1
2 (1− e−ω2(τ2−τ1))

1
2 e−ω2( 1

2 (k−1)(τ2−τ1)+V (2)+(τ2−τ1)
Pk+1
i=3 mi)

×
∫ ∞
ω2

ωm3−1
3 (1− e−ω3(τ3−τ2))

1
2 e−ω3( 1

2 (k−2)(τ3−τ2)+V (3)+(τ3−τ2)
Pk+1
i=4 mi)

× · · ·

×
∫ ∞
ωk−2

ω
mk−1−1
k−1 (1− e−ωk−1(τk−1−τk−2))

1
2 e−ωk−1((τk−1−τk−2)+V (k−1)+(τk−1−τk−2)

Pk+1
i=k mi)

×
∫ ∞
ωk−1

ωmk−1
k (1− e−ωk(τk−τk−1))

1
2 e−ωk(

1
2 (τk−τk−1)+V (k)+(τk−τk−1)mk+1)

×
∫ ∞
ωk

ω
mk+1−1
k+1 e−ωk+1V

(k+1)
dωk+1dωk · · · dω3dω2dω1.

Since, for l = 1, · · · , k, (1− e−ωl(τl−τl−1))
1
2 ≤ 1,∫

Θω

πJ(ω|y)dω ≤
∫ ∞

0

ωm1−1
1 e−ω1( 1

2kτ1+V (1)+τ1
Pk+1
i=2 mi)

×
∫ ∞

0

ωm2−1
2 e−ω2( 1

2 (k−1)(τ2−τ1)+V (2)+(τ2−τ1)
Pk+1
i=3 mi)

×
∫ ∞

0

ωm3−1
3 e−ω3( 1

2 (k−2)(τ3−τ2)+V (3)+(τ3−τ2)
Pk+1
i=4 mi)

× · · ·

×
∫ ∞

0

ω
mk−1−1
k−1 e−ωk−1((τk−1−τk−2)+V (k−1)+(τk−1−τk−2)

Pk+1
i=k mi)

×
∫ ∞

0

ωmk−1
k e−ωk(

1
2 (τk−τk−1)+V (k)+(τk−τk−1)mk+1)

×
∫ ∞

0

ω
mk+1−1
k+1 e−ωk+1V

(k+1)
dωk+1dωk · · · dω3dω2dω1

<∞,

if ml > 0, l = 1, 2, · · · , k + 1. This completes the proof. �

Using the first order matching prior given in (3.4), the joint posterior is given by

πM (ω|y) ∝
ωm1−1

1 exp
{
−
∑k
l=1 ωl

[
(τl − τl−1)

∑k+1
i=l+1mi + V (l)

]
− ωk+1V

(k+1)
}

(1− e−ω1τ1)−
1
2

(∏k+1
l=2 ω

−ml
l

) . (4.3)
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The propriety of (4.3) can be proved similarly.

Theorem 4.2 The joint posterior (4.3) is proper, if m1 > 0 and ml ≥ 0, l = 2, 3, · · · , k+1.
The joint posterior under reference prior (3.7) is given by

πR(ω|y) ∝ (
k+1∏
l=1

ωml−1
l )(

k∏
l=1

(1− e−ωlτl) 1
2 )

× exp

{
−

k∑
l=1

ωl

[
(τl − τl−1)

k+1∑
i=l+1

mi + V (l)

]
− ωk+1V

(k+1)

}
. (4.4)

Theorem 4.3 The joint posterior (4.4) is proper, if ml > 0, l = 1, 2, · · · , k + 1.

Now, we find the marginal posterior pdf’s of the interest parameter ω1, under noninfor-
mative priors.

Theorem 4.4

1. The marginal posterior of ω1 under Jeffrey’s prior is given by

πJ(ω1|y) =
ωm1−1

1 (1− e−ω1τ1)
1
2 e−ω1( 1

2kτ1+V (1)+τ1
Pk+1
i=2 mi)

N
(k+1)
J

×
∫ ∞
ω1

∫ ∞
ω2

· · ·
∫ ∞
ωk−2

∫ ∞
ωk−1

[
k∏
l=2

ωml−1
l (1− e−ωl(τl−τl−1))

1
2

× e−ωl(
1
2 (k−l+1)(τl−τl−1)+V (l)+(τl−τl−1)

Pk+1
i=l+1mi)]

× [1− IG(ωk|mk+1, V
(k+1))]dωkdωk−1 · · · dω3dω2, (4.5)

where N (k+1)
J is the normalizing constant given by

N
(k+1)
J =

∫ ∞
0

∫ ∞
ω1

· · ·
∫ ∞
ωk−2

∫ ∞
ωk−1

[
k∏
l=1

ωml−1
l (1− e−ωl(τl−τl−1))

1
2

× e−ωl(
1
2 (k−l+1)(τl−τl−1)+V (l)+(τl−τl−1)

Pk+1
i=l+1mi)]

× [1− IG(ωk|mk+1, V
(k+1))]dωkdωk−1 · · · dω2dω1

and IG(x|γ1, γ2) is an incomplete gamma function with parameters γ1 and γ2.

2. The marginal posterior of ω1 under matching prior is given by

πM (ω1|y) =
ωm1−1

1 (1− e−ω1τ1)
1
2 e−ω1(V (1)+τ1

Pk+1
i=2 mi)

N
(k+1)
M

×
∫ ∞
ω1

∫ ∞
ω2

· · ·
∫ ∞
ωk−2

∫ ∞
ωk−1

[
k∏
l=2

ωmll e−ωl(V
(l)+(τl−τl−1)

Pk+1
i=l+1mi)]

× [1− IG(ωk|mk+1 + 1, V (k+1))]dωkdωk−1 · · · dω3dω2, (4.6)
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where N (k+1)
M is the normalizing constant given by

N
(k+1)
M =

∫ ∞
0

∫ ∞
ω1

· · ·
∫ ∞
ωk−2

∫ ∞
ωk−1

ωm1−1
1 (1− e−ω1τ1)

1
2 e−ω1(V (1)+τ1

Pk+1
i=2 mi)

× [
k∏
l=2

ωmll e−ωl(V
(l)+(τl−τl−1)

Pk+1
i=l+1mi)]

× [1− IG(ωk|mk+1 + 1, V (k+1))]dωkdωk−1 · · · dω2dω1.

3. The marginal posterior of ω1 under reference prior is given by

πR(ω1|y) =
ωm1−1

1 (1− e−ω1τ1)
1
2 e−ω1(V (1)+τ1

Pk+1
i=2 mi)

N
(k+1)
R

×
∫ ∞
ω1

∫ ∞
ω2

· · ·
∫ ∞
ωk−2

∫ ∞
ωk−1

[
k∏
l=2

ωml−1
l (1− e−ωl(τl−τl−1))

1
2

× e−ωl(V
(l)+(τl−τl−1)

Pk+1
i=l+1mi)]

× [1− IG(ωk|mk+1, V
(k+1))]dωkdωk−1 · · · dω3dω2, (4.7)

where N (k+1)
R is the normalizing constant given by

N
(k+1)
R =

∫ ∞
0

∫ ∞
ω1

· · ·
∫ ∞
ωk−2

∫ ∞
ωk−1

[
k∏
l=1

ωml−1
l (1− e−ωl(τl−τl−1))

1
2

eωl(V
(l)+(τl−τl−1)

Pk+1
i=l+1mi)

]
× [1− IG(ωk|mk+1, V

(k+1))]dωkdωk−1 · · · dω2dω1.

5. Numerical examples

We will show some simulation results and example based on artificial data set. We will
compare the coverage probability of the priors when n is small and moderate.

Let θγ(π; Y) be the posterior γ-quantile of θ given Y under the prior π. So, (0, θγ(π; Y))
is the one-sided γ posterior confidence interval. Let Q(θ,α)(γ; θ) be a frequentist coverage
probability of this posterior confidence interval.

Q(θ,α)(γ; θ) = P{0 < θ ≤ θγ(π; Y)} = γ.

Similarly, we can define αγ(π; Y) and Q(θ,α)(γ;α) to be the posterior γ quantile of α and
the corresponding frequentist coverage probability, respectively. In Table 5.1, the estimated
Q(θ,α)(γ; θ) and Q(θ,α)(γ;α) are shown, when γ = 0.05(0.95). To obtain the table, we
generate 10,000 independent random samples for fixed θ, τ and α from simple step stress ALT
model. Note that under the prior π and given Y, the event θ ≤ θγ(π; Y) is equivalent to the
event Fθ(θγ(π; Y)|Y) ≤ γ. So, we calculate the relative frequency of Fθ(θγ(π; Y)|Y) ≤ γ.

Table 5.1 shows the frequentist coverage probability of ω1. For sample sizes 5 to 60, the
simulation is repeated 10000 times. In this simulation, we assume that θ = 2, α1 = 0.5
and α2 = 0.5. The tampering points τ1 and τ2 are determined to satisfy P{Y ≤ τ1} = 1

3 ,
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Table 5.1 Coverage probability for θ in three-step model

sample size πJ πM πR

τ1 τ2 n 0.05 0.95 0.05 0.95 0.05 0.95
5 0.000 0.990 0.000 1.000 0.000 1.000
10 0.006 0.888 0.022 0.920 0.015 0.910
15 0.013 0.909 0.029 0.925 0.022 0.921
20 0.014 0.917 0.029 0.934 0.024 0.930
25 0.019 0.924 0.032 0.948 0.028 0.946
30 0.021 0.920 0.034 0.943 0.031 0.941

0.2027 0.3760 35 0.024 0.929 0.037 0.939 0.034 0.938
40 0.026 0.933 0.040 0.948 0.036 0.946
45 0.026 0.928 0.037 0.944 0.036 0.943
50 0.031 0.939 0.042 0.948 0.040 0.947
55 0.033 0.936 0.044 0.950 0.041 0.950
60 0.032 0.935 0.044 0.946 0.042 0.945
5 0.000 0.756 0.000 0.990 0.000 0.935
10 0.001 0.862 0.017 0.929 0.012 0.916
15 0.009 0.890 0.028 0.932 0.022 0.925
20 0.016 0.901 0.035 0.936 0.030 0.931
25 0.016 0.906 0.034 0.938 0.030 0.933
30 0.022 0.919 0.038 0.944 0.035 0.941

0.3466 0.4479 35 0.020 0.920 0.037 0.944 0.034 0.941
40 0.028 0.921 0.043 0.941 0.040 0.939
45 0.025 0.917 0.040 0.941 0.037 0.939
50 0.024 0.928 0.037 0.949 0.035 0.947
55 0.029 0.932 0.044 0.948 0.041 0.947
60 0.030 0.931 0.043 0.948 0.041 0.947

Table 5.2 Estimates of parameters

MLE πJ πM πR

θ 1.182× 10−2 8.010× 10−3 8.014× 10−3 8.013× 10−3

α1 2.159× 10−1 1.917× 10−1 1.454× 10−1 1.693× 10−1

α2 5.732× 10−2 7.921× 10−2 6.793× 10−2 8.877× 10−2

P{Y ≥ τ2} = 1
3 and P{Y ≤ τ1} = 1

2 , P{Y ≥ τ2} = 1
3 . The points are given by τ1 = 0.2027,

τ2 = 0.3760 and τ1 = 0.3466, τ2 = 0.4479, respectively.
From this simulation, we can find the fact that matching prior and reference prior achieve

the frequentist coverage probability relatively well. And the tampering point does not affect
the coverage probability.

Example. The following 15 data, given by Proschan (1963), are a part of time intervals
of successive failures of the air conditioning system in Boeing jet airplanes.

74 57 48 29 502 12 70 21 29 386 59 27 153 26 326

We apply the data to the model (2.2) with k = 2. We assume that the acceleration factors
α1 = 0.1 and α2 = 0.1. And the tempering point τ1 = 50 and τ2 = 75. Here, we choose τ2
such that τ1 + (τ2 − τ1)α−1

1 = 300. The data are given in Table 5.3.
Using the above data, we compute the MLE and various Bayes estimates for the parame-

ters. The estimates are given in Table 5.2. The estimated values are not quite different. All
the estimates give overestimated values for θ and α1, but α2 is underestimated.



An objective Bayesian analysis for multiple step stress accelerated life tests 613

Table 5.3 Accelerated data with two tempering points

X δ1 δ2 δ3 Y
74 0 1 0 52.40
57 0 1 0 50.70
48 1 0 0 48.00
29 1 0 0 29.00
502 0 0 1 77.02
12 1 0 0 12.00
70 0 1 0 52.00
21 1 0 0 21.00
29 1 0 0 29.00
386 0 0 1 75.86
59 0 1 0 50.90
27 1 0 0 27.00
153 0 1 0 60.30
26 1 0 0 26.00
326 0 0 1 75.26

From Table 5.2, we see that Bayes estimates give better estimates than MLE. For pa-
rameter α1, the Bayes estimate under πM is the closest to 0.1 whereas for α2, the Bayes
estimate under πR is the closest to 0.1. And we can conclude that the overall performance
of the Bayes estimates are superior to MLE.

From this example, one can find the fact that three step stress ALT shorten the original
life time remarkably. This can save more money and time than two step stress ALT. But
the estimate of parameter of interest are close to the estimate based on original life time.

6. Concluding remarks

There has been done a little work for Bayesian analysis of ALTs data. Almost all the
Bayesian inferences related to ALTs data were based on the conjugate priors.

In this paper, we developed the noninformative priors such as probability matching and
reference prior for the parameter of interest in the presence of nuisance parameters. And
simulations and examples were given to verify our proposed Bayesian analysis performed
well.

Finally, we recommend the use of probability matching prior or reference prior to analyze
multiple step stress ALTs data.
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