DOI QR코드

DOI QR Code

A Dose Volume Histogram Analyzer Program for External Beam Radiotherapy

방사선치료 관련 연구를 위한 선량 체적 히스토그램 분석 프로그램 개발

  • Kim, Jin-Sung (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, College of Medicine) ;
  • Yoon, Myong-Geun (Proton Therapy Center, National Cancer Center) ;
  • Park, Sung-Yong (Proton Therapy Center, National Cancer Center) ;
  • Shin, Jung-Suk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, College of Medicine) ;
  • Shin, Eun-Hyuk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, College of Medicine) ;
  • Ju, Sang-Gyu (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, College of Medicine) ;
  • Han, Young-Yih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, College of Medicine) ;
  • Ahn, Yong-Chan (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, College of Medicine)
  • 김진성 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 윤명근 (국립암센터 양성자치료센터) ;
  • 박성용 (국립암센터 양성자치료센터) ;
  • 신정석 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 신은혁 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 주상규 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 한영이 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 안용찬 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실)
  • Received : 2009.08.12
  • Accepted : 2009.09.29
  • Published : 2009.12.31

Abstract

Purpose: To provide a simple research tool that may be used to analyze a dose volume histogram from different radiation therapy planning systems for NTCP (Normal Tissue Complication Probability), OED (Organ Equivalent Dose) and so on. Materials and Metohds: A high-level computing language was chosen to implement Niemierko's EUD, Lyman-Kutcher-Burman model's NTCP, and OED. The requirements for treatment planning analysis were defined and the procedure, using a developed GUI based program, was described with figures. The calculated data, including volume at a dose, dose at a volume, EUD, and NTCP were evaluated by a commercial radiation therapy planning system, Pinnacle (Philips, Madison, WI, USA) for comparison. Results: The volume at a special dose and a dose absorbed in a volume on a dose volume histogram were successfully extracted using DVH data of several radiation planning systems. EUD, NTCP and OED were successfully calculated using DVH data and some required parameters in the literature. Conclusion: A simple DVH analyzer program was developed and has proven to be a useful research tool for radiation therapy.

목 적: 방사선치료 관련 연구를 수행함에 있어서 선량 체적 히스토그램(dose volume histogram, DVH)을 분석하는 것이 필수적이나 상용 방사선치료계획시스템에서 수행할 수 없다. 본 연구는 이러한 선량 체적 히스토그램의 정보를 쉽게 분석할 수 있도록 소프트웨어를 제작하였다. 대상 및 방법: 방사선치료계획 시스템에서 치료계획 후에 환자의 DVH 데이터를 텍스트로 저장하여 이를 이용해서 DVH 상에서의 필요한 특정 값들(Vx, Dx)을 지정하여 획득할 수 있도록 하였고, Niemierko의 generalized equivalent uniform dose (EUD), Lyman-Kutcher-Burman 모델을 이용한 normal tissue complication probability (NTCP) 및 방사선치료의 2차 암유발 위험도 인자인 organ equivalent dose (OED)를 계산하는 프로그램을 개발하였다. 결 과: 환자의 데이터를 가지고 실제 방사선치료계획 시스템 상에서의 Vx, Dx와 NTCP 비교를 통해 개발된 프로그램의 계산 알고리즘을 검증하였고 0.1% 내의 오차를 보였으며 EUD 및 OED도 성공적으로 계산되었다. 결 론: 선량 체적 히스토그램을 분석하는 프로그램을 개발하였으며 다양한 방사선치료 관련 연구에 활용할 수 있을 것으로 예상된다.

Keywords

References

  1. Fay M, Tan A, Fisher R, Mac Manus M, Wirth A, Ball D. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 2005;61:1355-1363 https://doi.org/10.1016/j.ijrobp.2004.08.025
  2. Georg D, Kirisits C, Hillbrand M, Dimopoulos J, Potter R. Image-guided radiotherapy for cervix cancer: high-tech external beam therapy versus high-tech brachytherapy. Int J Radiat Oncol Biol Phys 2008;71:1272-1278 https://doi.org/10.1016/j.ijrobp.2008.03.032
  3. Jones LC, Hoban PW. Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Phys Med Biol 2000;45:159-170 https://doi.org/10.1088/0031-9155/45/1/311
  4. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 1997;24:103-110 https://doi.org/10.1118/1.598063
  5. Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys med 2007;23:115-125 https://doi.org/10.1016/j.ejmp.2007.07.001
  6. Luxton G, Keall PJ, King CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Phys Med Biol 2008;53:23-36 https://doi.org/10.1088/0031-9155/53/1/002
  7. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 1989;16:1623-1630 https://doi.org/10.1016/0360-3016(89)90972-3
  8. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 1991;21:137-14
  9. Lyman JT. Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 1992;22:247-250 https://doi.org/10.1016/0360-3016(92)90040-O
  10. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiationinduced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002;53:810-821 https://doi.org/10.1016/S0360-3016(02)02846-8
  11. Warkentin B, Stavrev P, Stavreva N, Field C, Fallone BG. A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. J Appl Clin Med Phys 2004;5:50-63 https://doi.org/10.1120/jacmp.26.149
  12. Kupchak C, Battista J, Van Dyk J. Experience-driven dose-volume histogram maps of NTCP risk as an aid for radiation treatment plan selection and optimization. Med Phys 2008;35:333-343 https://doi.org/10.1118/1.2815943
  13. Semenenko VA, Li XA. Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys Med Biol 2008;53:737-755 https://doi.org/10.1088/0031-9155/53/3/014
  14. Schneider U, Lomax A, Timmermann B. Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol 2008;89:135-140 https://doi.org/10.1016/j.radonc.2008.07.017
  15. Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys 2009;36:1138-1143 https://doi.org/10.1118/1.3089792
  16. Stathakis S, Roland T, Papanikolaou N, Li J, Ma C. A prediction study on radiation-induced second malignancies for IMRT treatment delivery. Technol Cancer Res Treat 2009;8:141-148 https://doi.org/10.1177/153303460900800207
  17. Yoon M, Ahn SH, KIM J, et al. Radiation-induced cancers from modern radiotherapy techniques: intensity-modulated radiotheraphy versus proton therapy. Int J Radiat Oncol Biol Phys 2009 [Epub 2009 Oct 30]
  18. Zwahlen DR, Ruben JD, Jones P, Gargliadi F, Millar JL, Schneider U. Effect of intensity-modulated pelvic radiotherapy on second cancer risk in the postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys 2009;74:539-545 https://doi.org/10.1016/j.ijrobp.2009.01.051
  19. Medical Physics. DVH Analyzer v1.0 [Internet]. [cited 2009 Sep 20]. Available from: http://mpjinsung.tistory.com/entry/DVH-Analyzerv10

Cited by

  1. A treatment planning study of proton arc therapy for para-aortic lymph node tumors: dosimetric evaluation of conventional proton therapy, proton arc therapy, and intensity modulated radiotherapy vol.11, pp.None, 2009, https://doi.org/10.1186/s13014-016-0717-4