DOI QR코드

DOI QR Code

Characterization of Petroleum Hydrocarbon Degradation by a Sphingomonas sp. 3Y Isolated from a Diesel-Contaminated Site.

디젤오염지역에서 분리한 세균 Sphingomonas sp. 3Y의 석유계 탄화수소분해특성

  • Ahn, Yeong-Hee (Department of Environmental Engineering, Dong-A University) ;
  • Jung, Byung-Gil (Department of Environmental Engineering, Dong-A University) ;
  • Sung, Nak-Chang (Department of Environmental Engineering, Dong-A University) ;
  • Lee, Young-Ok (Department of Biological Scienece, Daegu University)
  • Published : 2009.05.30

Abstract

Bacterial stain 3Y was isolated from a site that was contaminated with diesel for more than 15 years. The strain could grow on various petroleum using hydrocarbons as the sole carbon source. The strain grew not only on aliphatic hydrocarbons but also on aromatic hydrocarbons. 3Y grew on aliphatic petroleum hydrocarbons hexane or hexadecane, and aromatic petroleum hydrocarbons BTEX, phenol, biphenyl, or phenanthrene. The strain showed aromatic ring dioxygenase and meta-cleavage dioxygenase activities as determined by tests using indole and catechol. Aromatic ring dioxygenase is involved in the initial step of biodegradation of aromatic hydrocarbons while meta-cleavage dioxygenase catalyzes the cleavage of the benzene ring. Based on a nucleotide sequence analysis of its 16S rRNA gene, 3Y belongs to the genus Sphingomonas. A phylogenetic tress was constructed based on the nucleotide sequences of closest relatives of 3Y and petroleum hydrocarbon degrading sphingomonads. 3Y was in a cluster that was different from the cluster that contained well-known sphingomonads. The results of this study suggest that 3Y has the potential to cleanup oil-contaminated sites. Further investigation is warranted to optimize conditions to degrade petroleum hydrocarbons by the strain to develop a better bioremediation strategy.

장기간 경유로 오염된 지역의 토양으로부터 분리한 세균 3Y는 석유계 탄화수소를 구성하는 다양한 화합물을 유일 탄소원으로하여 성장하였다. Sphingomonas sp. 3Y는 지방족 화합물은 물론이고 방향족 화합물을 이용해서 성장할 수 있었다. 지방족 화합물로서는 hexane과 hexadecane을 이용하여 성장하였고, 한편 방향족 화합물로서는 BTEX는 물론이고 phenol, biphenyl, 또는 phenanthrene을 유일 탄소원으로 이용하여 성장하였다. 본 균주는 indole과 catechol을 이용한 실험결과 방향족 탄화수소의 생분해 과정에서 맨 첫 단계 반응에 관여하는 효소인 aromatic ring dioxygenase 활성과 benzene 환을 깨는 효소인 meta-cleavage dioxygenase 활성을 나타내었다. Sphingomonas sp. 3Y의 16S rRNA 유전자의 염기서열 분석과 계통수 작성 결과 본 균주는 ${\alpha}$-Proteobacteria인 Sphingomonas속에 해당하였으며 지금까지 잘 알려진 석유계 탄화수소를 분해하는 Sphingomonas sp. 균주들과는 다른 cluster를 형성하였다. 다양한 석유계 탄화수소 성분을 이용하여 성장하는 Sphingomonas sp. 3Y는 유류로 오염된 토양의 복원에 유용하게 사용될 것으로 여겨지며 이 균주의 최적 분해 조건을 조사한다면 그 결과는 이 균주가 분리된 오염지역의 생물학적 분해를 최적화하는데 기여할 것이다.

Keywords

References

  1. Ahn, Y., J. Sanseverino, and G. S. Sayler. 1999. Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation 10, 149-157 https://doi.org/10.1023/A:1008369905161
  2. Ahn, Y., H. Jung, R. Tatavarty, H. Choi, J. W. Yang, and I. S. Kim. 2005. Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil. Biodegradation 16, 45-56 https://doi.org/10.1007/s10531-004-0428-2
  3. Ahn, Y. 2007 Characterization of aromatic hydrocarbon degradation by a Sphingomonas sp. strain isolated from a diesel contaminated soil. Research Report 29, 127-132
  4. Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Mol. Biol. Rev. 45, 180-209
  5. Altschul, S. F., T. L. Madden, A .J. Schifer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  6. Johnsen, A. R., L. Y. Wick, and H. Harms. 2005. Principles of microbial PAH-degradation in soil. Environ. Pollution 133, 71-84 https://doi.org/10.1016/j.envpol.2004.04.015
  7. Stolz, A. 2009. Molecular characteristics of xenobiotic- degrading sphingomonads. Appl. Microbiol. Biotechnol. 81, 793-811 https://doi.org/10.1007/s00253-008-1752-3
  8. Stroud, J. L., G. I. Paton, and K. T. Semple. 2007. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J. Appl. Microbiol. 102, 1239-1253 https://doi.org/10.1111/j.1365-2672.2007.03401.x
  9. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  10. Lane, D. J. 1991. 16S/23S rRNA sequencing. pp. 115-147, In Stackebrandt, E. and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd
  11. Mastral, A. M. and M. S. Callen. 2000. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ. Sci. Technol. 34, 3051-3057 https://doi.org/10.1021/es001028d
  12. Ministry of Environment. 2007. Soil Environment Conservation Act. Republic of Korea.

Cited by

  1. Removal of polycyclic aromatic hydrocarbons from contaminated soil in a two-phase partitioning bioreactor vol.34, pp.9, 2017, https://doi.org/10.1007/s11814-017-0143-9