DOI QR코드

DOI QR Code

α-트로포마이오신의 276 또는 277 아미노산 잔기가 단일 시스테인 잔기로 치환된 돌연변이 트로포마이오신의 액틴친화력

Actin Affinities of Recombinant α-Tropomyosins That Residues 276 or 277 in the Carboxyl Terminal Region are Individually Substituted to a Cysteine Residue

  • 김돈규 (대구대학교 자연과학대학 분자생물학과) ;
  • 조영준 (대구대학교 자연과학대학 분자생물학과)
  • 발행 : 2009.05.30

초록

화학적 변형 방식에 의한 트로포마이오신과 액틴의 상호작용을 규명하기 위하여 액틴결합에 중요한 역할을 하는 C-말단부위의 아미노산 잔기 276 또는 277을 단일 시스테인 잔기로 치환한 돌연변이 트로포마이오신을 제조하여 대장균에서 대량 발현시킨 후 액틴 결합력을 측정하였다. 잔기277을 시스테인 잔기로 치환시킨 TM24(QC) 및 TM29(HC)는 액틴 결합 성질을 잃어버렸을 뿐만 아니라 트로포닌 존재 하에서도 액틴결합력이 증가하지 않았다. 이 결과는 잔기 277이 트로포마이신 기능에 중요한 역할을 한다는 것을 제시한다. 반면 잔기 276을 시스테인 잔기로 치환한 TM22(CT) 및 TM23(CA)는 액틴과 비교적 잘 결합하였을 뿐만 아니라 트로포닌 존재 하에서 액틴결합력이 증가하였다. 따라서 TM23(CA)는 시스테인 잔기를 도입하여도 트로포마이오신의 기능을 유지하였으며 향후 화학적 변형 연구를 위한 도구로 중요하게 사용될 수 있을 것이다.

It has been previously reported that the carboxyl terminal residues 276 and 277 of ${\alpha}$-tropomyosin are important for actin affinity. In order to investigate actin affinities of these two residues of skeletal (HA) and smooth (QT) muscle ${\alpha}$-tropomyosins, a series of mutant tropomyosins were constructed in which residues at either 276 or 277 were individually replaced with a cysteine residue for chemical modification. These mutants were overexpressed in E. coli as unacetylated and Ala-Ser (AS) dipeptide fusion forms. While actin affinities of unacetylated tropomyosins were considerably low, those of AS/TMs were remarkably higher than those of corresponding unacetylated tropomyosins. However, actin affinities of AS/TM24 (QC) and AS/TM29 (HC) were dramatically lower than those of other AS/TMs and were close to those of unacetylated tropomyosins. In addition, actin affinities of unacetylated TM24 (QC) and TM29 (HC) failed to be restored in the presence of troponin, unlike unacetylated TM10 (HA) and TM23 (CA). These results indicated that the presence of a cysteine residue at 277 caused a drastic decrease in actin affinity, and also that the residue 277 is important for actin affinity of ${\alpha}$-tropomyosin. Since TM23 (CA) showed high actin affinity, it may serve as a valuable tool for chemical modification studies for investigating the interaction of the carboxyl terminal residues of ${\alpha}$-tropomyosin with actin and/or troponin.

키워드

참고문헌

  1. Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Brown, J. H. and C. Cohen. 2005. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv. Protein Chem. 17, 121-159
  3. Chen, Y. and S. S. Lehrer. 2004. Distances between tropomyosin sites across the muscle thin filament using luminescence resonance energy transfer: evidence for tropomyosin flexibility. Biochemistry 43, 11491-11499 https://doi.org/10.1021/bi049186v
  4. Cho, Y. and S. E. Hitchcock-DeGregori. 1991. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc. Natl. Acad. Sci. USA 88, 10153-10157 https://doi.org/10.1073/pnas.88.22.10153
  5. Cho, Y.-J. 2000. The carboxyl terminal amino acid residuesg glutamine 276 - threonine 277 are important for actin affinity of the unacetylated smooth $\alpha$-tropomyosin. J. Biochem. Mol. Biol. 33, 531-536
  6. Cho, Y.-J. 2004. Functions of α-tropomyosin are mainly dependent upon the local structures of the amino terminus. J. Life Science 14, 770-777 https://doi.org/10.5352/JLS.2004.14.5.770
  7. Cho, Y.-J., J. Liu and S. E. Hitchcock-DeGregori. 1990. The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265, 538-545
  8. Correa, F., R. K. Salinas, A. M. Bonvin, and C. S. Farah. 2008. Deciphering the role of the electrostatic interactions in the α-tropomyosin head-to-tail complex. Proteins 73, 902-17 https://doi.org/10.1002/prot.22116
  9. Coulton, A. T., K. Koda, S. S. Lehrer, and M. A. Geeves. 2008. Role of the head-to-tail overlap region in smooth and skeletal muscle β-tropomyosin. Biochemistry 47, 388-397 https://doi.org/10.1021/bi701144g
  10. Golitsina, N. L. and S. S. Lehrer. 1999. Smooth muscle alpha-tropomyosin crosslinks to caldesmon, to actin and to myosin subfragment 1 on the muscle thin filament. FEBS letters 463, 146-150 https://doi.org/10.1016/S0014-5793(99)01589-6
  11. Graceffa, P. and S. S. Lehrer. 1980. The excimer fluorescence of pyrene-labeled tropomyosin. A probe of conformational dynamics. J. Biol. Chem. 255, 11296-11300
  12. Greenfield, N. J., T. Palm, and S. E. Hitchcock-DeGregori. 2002. Structure and interactions of the carboxyl terminus of striated muscle α-tropomyosin: it is important to be flexible. Biophys. J. 83, 2754-2766 https://doi.org/10.1016/S0006-3495(02)75285-5
  13. Greenfield, N. J. and S. E. Hitchcock-DeGregori. 1995. The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry 34, 16797-16805 https://doi.org/10.1021/bi00051a030
  14. Greenfield, N. J., Y. J. Huang, G. V. T. Swapna, A. Bhattacharya, A. B. Rapp, A. Singh, G. T. Montelione, and S. E. Hitchcock-DeGregori. 2006. Solution NMR structure of the junction between tropomyosin molecules. Implications for actin binding and regulation. J. Mol. Biol. 364, 80-96 https://doi.org/10.1016/j.jmb.2006.08.033
  15. Gunning, P. W., G. Schevzov, A. J. Kee, and E. C. Hardeman. 2005. Tropomyosin isoforms: dividing rods for actin cytoskeleton function. Trends Cell Biol. 15, 333-341 https://doi.org/10.1016/j.tcb.2005.04.007
  16. Hammell, R. and S. E. Hitchcock-DeGregori. 1996. Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J. Biol. Chem. 271, 4236-4242 https://doi.org/10.1074/jbc.271.8.4236
  17. Heald, R. W. and S. E. Hitchcock-DeGregori. 1988. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin J. Biol. Chem. 263, 5254-5259
  18. Heeley, D. H., K. Golosinska, and L. B. Smillie. 1988. The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C. J. Biol. Chem. 262, 9971-9978
  19. Jagatheesan, G., S. Rajan, N. Petrashevskaya, A. Schwartz, G. Bolvin, S. Vahebi, P. DeTombe, R. J. Solaro, E. Labitzke, G. Hillard, and D. W. Wieczorek. 2003. Functional importance of the carboxyl-terminal region of striated muscle tropomyosin. J. Biol. Chem. 278, 23204-23211 https://doi.org/10.1074/jbc.M303073200
  20. Jung, S.-J. 1999. Construction and characterization of the recombinant rat striated tropomyosin altered amino acid residue 190 from cys to ser. J. Nat. Sci., Taegu University, 16, 133-138
  21. Jung, S,-J. and Y.-J. Cho. 2007. Glutamine residue at 278 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity. J. Life Science 17, 204-210
  22. Jung, S.-J., S.-M. Seo, K.-H. Suh, J.-S. Yang, and Y.-J. Cho. 2001. Effect of three amino acid residues at the carboxyl terminus in unacetylated α-tropomyosin on actin affinity. J. Life Science 11, 1-6
  23. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  24. Li, Y., S. Mui, J. H. Brown, J. Strand, L. Reshetnikova, L. S. Tobacman, and C. Cohen. 2002. The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc. Nat. Acad. Sci. (U.S.A.) 99, 7378-7383 https://doi.org/10.1073/pnas.102179999
  25. McLachlan, A. D. and M. Stewart. 1975. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. Mol. Biol. 98, 293-304
  26. Miki, M., H. Saeki, K. Shitaka, Y. Sano, K. Maeda, Y. Maeda, and T. Wakabayashi. 2004. Fluorescence resonance energy transfer between points on actin and the C-terminal region of tropomyosin in skeletal muscle thin filaments. J. Biochem. 136, 39-47 https://doi.org/10.1093/jb/mvh090
  27. Monteiro, P. B., R. C. Lataro, J. A. Ferro, and F. d. C. Reinach. 1994. Functional $\alpha$-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino terminal acetyl group. J. Biol. Chem. 269, 10461-10466
  28. Nadeau, O. W. and G. M. Carlson. 2001. Chemical crosslinking in studying protein-protein interactions. pp. 75-92, In Golemis, E. (ed.), Protein-Protein Interactions A Molecular Cloning Manual, Cold Spring Harbor Laboratory, ColdSpring Harbor, NY
  29. Palm, T., N. J. Greenfield, and S. E. Hitchcock-DeGregori. 2003. Tropomyosin ends determine the stability and functionality of overlap and troponin T complexes. Biophys. J. 84, 3181-3189 https://doi.org/10.1016/S0006-3495(03)70042-3
  30. Perry, S. V. 2001. Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell Motil. 22, 5-49 https://doi.org/10.1023/A:1010303732441
  31. Urbancikova, M. and S. E. Hitchcock-DeGregori. 1994. Requirement of amino-terminal modification for striated muscle α-tropomyosin function. J. Biol. Chem. 269, 24310-24315
  32. Yang, Y. Z., E. D. Korn, and E. Eisenberg. 1979. Cooperative binding of tropomyosin to muscle and Acanthamoeba actin. J. Biol. Chem. 254, 2084-2088