참고문헌
- Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Brown, J. H. and C. Cohen. 2005. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv. Protein Chem. 17, 121-159
- Chen, Y. and S. S. Lehrer. 2004. Distances between tropomyosin sites across the muscle thin filament using luminescence resonance energy transfer: evidence for tropomyosin flexibility. Biochemistry 43, 11491-11499 https://doi.org/10.1021/bi049186v
- Cho, Y. and S. E. Hitchcock-DeGregori. 1991. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc. Natl. Acad. Sci. USA 88, 10153-10157 https://doi.org/10.1073/pnas.88.22.10153
-
Cho, Y.-J. 2000. The carboxyl terminal amino acid residuesg glutamine 276 - threonine 277 are important for actin affinity of the unacetylated smooth
$\alpha$ -tropomyosin. J. Biochem. Mol. Biol. 33, 531-536 - Cho, Y.-J. 2004. Functions of α-tropomyosin are mainly dependent upon the local structures of the amino terminus. J. Life Science 14, 770-777 https://doi.org/10.5352/JLS.2004.14.5.770
- Cho, Y.-J., J. Liu and S. E. Hitchcock-DeGregori. 1990. The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265, 538-545
- Correa, F., R. K. Salinas, A. M. Bonvin, and C. S. Farah. 2008. Deciphering the role of the electrostatic interactions in the α-tropomyosin head-to-tail complex. Proteins 73, 902-17 https://doi.org/10.1002/prot.22116
- Coulton, A. T., K. Koda, S. S. Lehrer, and M. A. Geeves. 2008. Role of the head-to-tail overlap region in smooth and skeletal muscle β-tropomyosin. Biochemistry 47, 388-397 https://doi.org/10.1021/bi701144g
- Golitsina, N. L. and S. S. Lehrer. 1999. Smooth muscle alpha-tropomyosin crosslinks to caldesmon, to actin and to myosin subfragment 1 on the muscle thin filament. FEBS letters 463, 146-150 https://doi.org/10.1016/S0014-5793(99)01589-6
- Graceffa, P. and S. S. Lehrer. 1980. The excimer fluorescence of pyrene-labeled tropomyosin. A probe of conformational dynamics. J. Biol. Chem. 255, 11296-11300
- Greenfield, N. J., T. Palm, and S. E. Hitchcock-DeGregori. 2002. Structure and interactions of the carboxyl terminus of striated muscle α-tropomyosin: it is important to be flexible. Biophys. J. 83, 2754-2766 https://doi.org/10.1016/S0006-3495(02)75285-5
- Greenfield, N. J. and S. E. Hitchcock-DeGregori. 1995. The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry 34, 16797-16805 https://doi.org/10.1021/bi00051a030
- Greenfield, N. J., Y. J. Huang, G. V. T. Swapna, A. Bhattacharya, A. B. Rapp, A. Singh, G. T. Montelione, and S. E. Hitchcock-DeGregori. 2006. Solution NMR structure of the junction between tropomyosin molecules. Implications for actin binding and regulation. J. Mol. Biol. 364, 80-96 https://doi.org/10.1016/j.jmb.2006.08.033
- Gunning, P. W., G. Schevzov, A. J. Kee, and E. C. Hardeman. 2005. Tropomyosin isoforms: dividing rods for actin cytoskeleton function. Trends Cell Biol. 15, 333-341 https://doi.org/10.1016/j.tcb.2005.04.007
- Hammell, R. and S. E. Hitchcock-DeGregori. 1996. Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J. Biol. Chem. 271, 4236-4242 https://doi.org/10.1074/jbc.271.8.4236
- Heald, R. W. and S. E. Hitchcock-DeGregori. 1988. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin J. Biol. Chem. 263, 5254-5259
- Heeley, D. H., K. Golosinska, and L. B. Smillie. 1988. The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C. J. Biol. Chem. 262, 9971-9978
- Jagatheesan, G., S. Rajan, N. Petrashevskaya, A. Schwartz, G. Bolvin, S. Vahebi, P. DeTombe, R. J. Solaro, E. Labitzke, G. Hillard, and D. W. Wieczorek. 2003. Functional importance of the carboxyl-terminal region of striated muscle tropomyosin. J. Biol. Chem. 278, 23204-23211 https://doi.org/10.1074/jbc.M303073200
- Jung, S.-J. 1999. Construction and characterization of the recombinant rat striated tropomyosin altered amino acid residue 190 from cys to ser. J. Nat. Sci., Taegu University, 16, 133-138
- Jung, S,-J. and Y.-J. Cho. 2007. Glutamine residue at 278 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity. J. Life Science 17, 204-210
- Jung, S.-J., S.-M. Seo, K.-H. Suh, J.-S. Yang, and Y.-J. Cho. 2001. Effect of three amino acid residues at the carboxyl terminus in unacetylated α-tropomyosin on actin affinity. J. Life Science 11, 1-6
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
- Li, Y., S. Mui, J. H. Brown, J. Strand, L. Reshetnikova, L. S. Tobacman, and C. Cohen. 2002. The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc. Nat. Acad. Sci. (U.S.A.) 99, 7378-7383 https://doi.org/10.1073/pnas.102179999
- McLachlan, A. D. and M. Stewart. 1975. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. Mol. Biol. 98, 293-304
- Miki, M., H. Saeki, K. Shitaka, Y. Sano, K. Maeda, Y. Maeda, and T. Wakabayashi. 2004. Fluorescence resonance energy transfer between points on actin and the C-terminal region of tropomyosin in skeletal muscle thin filaments. J. Biochem. 136, 39-47 https://doi.org/10.1093/jb/mvh090
-
Monteiro, P. B., R. C. Lataro, J. A. Ferro, and F. d. C. Reinach. 1994. Functional
$\alpha$ -tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino terminal acetyl group. J. Biol. Chem. 269, 10461-10466 - Nadeau, O. W. and G. M. Carlson. 2001. Chemical crosslinking in studying protein-protein interactions. pp. 75-92, In Golemis, E. (ed.), Protein-Protein Interactions A Molecular Cloning Manual, Cold Spring Harbor Laboratory, ColdSpring Harbor, NY
- Palm, T., N. J. Greenfield, and S. E. Hitchcock-DeGregori. 2003. Tropomyosin ends determine the stability and functionality of overlap and troponin T complexes. Biophys. J. 84, 3181-3189 https://doi.org/10.1016/S0006-3495(03)70042-3
- Perry, S. V. 2001. Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell Motil. 22, 5-49 https://doi.org/10.1023/A:1010303732441
- Urbancikova, M. and S. E. Hitchcock-DeGregori. 1994. Requirement of amino-terminal modification for striated muscle α-tropomyosin function. J. Biol. Chem. 269, 24310-24315
- Yang, Y. Z., E. D. Korn, and E. Eisenberg. 1979. Cooperative binding of tropomyosin to muscle and Acanthamoeba actin. J. Biol. Chem. 254, 2084-2088