DOI QR코드

DOI QR Code

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Published : 2009.06.30

Abstract

The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.

Keywords

References

  1. G.G. Acosta, C.J.Verucchi and E.R. Gelso, 'A current monitoring system for diagnosing electrical failures in induction motors', Mechanical Systems and Signal Processing 20 (2006) 953-965, Elsevier https://doi.org/10.1016/j.ymssp.2004.10.001
  2. M. E. H. Benbouzid, 'A review of induction motors signature analysis as a medium for faults detection', IEEE Trans. On Industry Electron, Vol. 47, pp. 984-993, Oct. 2000 https://doi.org/10.1109/41.873206
  3. S. Nandi and H. Toliyat, 'Fault diagnosis of electrical machines-a review', IEEE IEMCD '99, International Electric Machines and Drives Conference, May 9-12, Washington, USA, 1999
  4. G. Didier, E. Temisien, O.Caspary and H. Razik, 'A new approach to detect broken rotor bars in induction machines by current spectrum analysis', Mechanical Systems and Signal Processing 20, Elsevier, pp 953-965, 2006 https://doi.org/10.1016/j.ymssp.2004.10.001
  5. G. B. Kliman, J. Stein, R. D. Endicott and R. A. Koegl 'Non invasive detection of broken rotor bars in operating ìnductions motors', IEEE Transactions on Energy Conversion, Vol. 3(4), Dee 1998
  6. D.J Siyambalapitiya and P.G. MClaren, 'Reliabí1ity ìprovεment and economic benefits of on-1ine monitoring systεm for largε induction machines', IEEE Transactions on lndustry Applications 26, pp 1018-1025, 1990 https://doi.org/10.1109/28.62371
  7. A. Menacer 'Contribution a lidentification des parametres et des etats d’une machine a induction pour diagnostic et developpement de commande robuste', these doctorat, universite de Batna, Algerie, Dec 2007
  8. F.Filipetti, 'G. Francεschini, C. Tassoni and G. B. Kliman, Impact of speed ripple on rotor fault diagnosis of induction machine', International Conference on Electrical Machines, Vol.2, Vigo, Spain, Sept 10-12, 1996
  9. H. Bae, Y. Tae Kim, S.H. Lee, S. Kim, and M.H. Lεe , 'Fault diagnostic of induction motors for equipment reliability and health maintenance based upon Fourier and wavelet analysis', Artif Life Robotics (2005) 9:112-116 https://doi.org/10.1007/s10015-004-0331-7
  10. J.W. Cooley, P.A. W. Lewis and P.D. Welch, 'Application of the fast Fourier transform to computation of Fourìer integrals, Fourier seriεs and convolution integrals', IEEE Transactions on Audio and Electroacoustics, Vol. AU-15(2), pp. 79-84, 1967
  11. A. Menacer, S. Moreau, A. Benakcha and M.S. Nait Said, 'Effect ofthe position and the number of broken bars on Asynchronous Motor Stator Current Spectrum', EPE-Power Electronics and Motion Control, Portoroz, Slovenia, 2006
  12. A. Menacer, M.S. Nait Said, A. Benakcha, and S. Drid, 'Stator current analysis of incipient fault into asynchronous motor bars using Fourier fast transiorm', Journal of Electrical Engineering, Roumanie, Vo14, No 2-2004, pp 5-12
  13. G. Didier, 'Modelisation et diagnostic de la machine asynchrone en presence de defaillance', These de Doctorat de I'Universite Henri Poincare, Naney-I, 2004
  14. W. Shireen, S. Vanapalli and H. Nenεb , 'DSP based inverter control‘ for alternate energy systems', Journal of Power Sources 166 (2007) 445-449, Elsevler https://doi.org/10.1016/j.jpowsour.2007.01.064
  15. A. Menacer, S. Moreau, G. Champenois, A. Benakcha and M.S. Nait Said, 'Rotor Failures Diagnosis of Induction Machines by Current or Voltage Spectrum Analysis in Function of the Type of Feeding and the Load' , IET, Colloquium On Reability in Electromagnetic Systems. Preliminary May 2007, Paris, France
  16. S.V. Ustun and M. Demirtas, 'Optinal tuning of PI coefficients by using fuzzy-genetic for V/f controlled induction motor', Expert Systems with Applications, (2007), Elsevier

Cited by

  1. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors vol.12, pp.12, 2012, https://doi.org/10.3390/s120911989
  2. Broken rotor bar fault diagnosis using fast Fourier transform applied to field-oriented control induction machine: simulation and experimental study vol.92, pp.1-4, 2017, https://doi.org/10.1007/s00170-017-0143-2
  3. A Study on Fast Maximum Efficiency Control of Stator-Flux-oriented Induction Motor Drives vol.6, pp.5, 2011, https://doi.org/10.5370/JEET.2011.6.5.626
  4. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis vol.53, pp.5, 2014, https://doi.org/10.1016/j.isatra.2014.06.003