References
- Y. Tan, J. Wang, and J. M. Zurada, 'Nonlinear blind source separation using a radial basis function network,' IEEE Trans. Neural Networks, Vol. 12, No.1, pp. 124-134, 2001 https://doi.org/10.1109/72.896801
- M. Han and J Xi, 'Efficient clustering of radial basis perceptron neural network for recognition,' Pattern Recognition, Vol. 37, pp. 2059-2067, 2004 https://doi.org/10.1016/j.patcog.2004.02.014
- J. M. Vilaplana, J. L. P. Molina, and J. L. Coronado, 'Hyper RBF model for accurate reaching In redundant robotic systems,' Neurocomputing, Vol. 61, pp. 495-501, 2004 https://doi.org/10.1016/j.neucom.2004.06.006
- C. C. Lee, P. C. Chung, J. R. Tsai, and C. I. Chang, 'Robust radial basis function neural networks,' IEEE Trans. Syst. Man Cybern. Part B, Vol. 29, No.6, pp. 674-685, 1999 https://doi.org/10.1109/3477.809023
- S. J. Lee and C. L. Hou, .An ART-based construction of RBF networks,. IEEE Trans. Neural Networks, Vol. 13, No.6, pp. 1308-1321, 2002 https://doi.org/10.1109/TNN.2002.804308
- M. Wallace, N. Tsapatsoulis, and S. Kollias, 'Intelligent initialization of resource allocating RBF networks,' Neural Networks, Vol. 18, pp. 117-122, 2005 https://doi.org/10.1016/j.neunet.2004.11.005
- C. Harpham and C. W. Dawson, .The effect of different basis functions on a radial basis function network for time series prediction: a comparative study,. Neurocomputing, Vol. 69, pp. 2161-2170, 2006 https://doi.org/10.1016/j.neucom.2005.07.010
- J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981
- J. Moody and C. J. Darken, .Fast learning in networks of locally tuned processing units,. Neural Computation, Vol. 1, pp. 281 -294, 1989 https://doi.org/10.1162/neco.1989.1.2.281
- W Pedrycz, 'Conditional fuzzy clustering in the design of radial basis function neural networks,' IEEE Trans. Neural Networks, Vol. 9, No.4, pp. 601-612, 1998 https://doi.org/10.1109/72.701174
- W. Pedrycz, M. G. Chun, and G. Succi, 'N4: computing with neural receptive fields,' Neurocomputing, Vol. 55, pp. 383-401, 2003 https://doi.org/10.1016/S0925-2312(02)00630-6
- K. Mali and S. Mitra, 'Symbolic classification, clustering and fuzzy radial basis function network,' Fuzzy Sets and Systems, Vol. 152, pp. 553-564, 2005 https://doi.org/10.1016/j.fss.2004.10.001
- N. B. Karayiannis, 'Reformulated radial basis neural networks trained by gradient descent,' IEEE Trans. Neural Networks, Vol. 10, No.3, pp. 657-671, 1999 https://doi.org/10.1109/72.761725
- S. M. Loone and G. Irwin, 'Improving neural network training solutions using regularization,' Neurocomputing, Vol. 37, pp. 71-90, 2001 https://doi.org/10.1016/S0925-2312(00)00314-3
- H. S. Park, W. Pedrycz, and S. K. Oh, 'Evolutionary design of hybrid self-rganizing fuzzy polynomial neural networks with the aid of information granulation,' Expert Systems with Applications, Vol. 33, pp. 830-846, 2007 https://doi.org/10.1016/j.eswa.2006.07.006
- S. K. Oh, W. Pedrycz, and H. S. Park, 'Genetically optimized fuzzy polynomial neural networks,' IEEE Trans. fuzzy systems, Vol. 14, No.1, pp. 125-144, 2006 https://doi.org/10.1109/TFUZZ.2005.861620
- W. Pedrycz, 'Conditional fuzzy c-means,' Pattern Recognition Letters, Vol. 17, pp. 625-631, 1996 https://doi.org/10.1016/0167-8655(96)00027-X
- W. Pedrycz and K. C. Kwak, 'The development of incremental models,' IEEE Trans. Fuzzy Systems, Vol. 15, No.3, pp. 507-518, 2007 https://doi.org/10.1109/TFUZZ.2006.889967