Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM

퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계

  • Published : 2009.06.01

Abstract

The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

Keywords

References

  1. M.J.D. Powell, Radial basis functions for multivariable interpolation: a review, in: J.C. Mason, :M.G. Cox (Eds.) , Algorithms for Approximation, Oxford University Press, Oxford, 1987, pp.143-167
  2. W. Pedrycz, H.S. Park, S.K. Oh, A granular-oriented development of functional radial basis function neural networks, Neurocomputing 72 (2008) 420-435 https://doi.org/10.1016/j.neucom.2007.12.016
  3. Wing W.Y. Ng, Andres Dorado, Daniel S. Yeung, Witold Pedrycz, Ebroul Izquierdo, Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error, Pattern Recognition 40 (2007) 19-32 https://doi.org/10.1016/j.patcog.2006.07.002
  4. Carlos Renjifo, David Barsic, Craig Carmen, Kevin Norman, G.Scott Peacock, Improving radial basis function kernel classification through incremental learning and automatic parameter selection, Neurocomputing 72 (2008) 3-14 https://doi.org/10.1016/j.neucom.2008.04.053
  5. S. Albrecht, et al., Generalized radial basis function networks for classification and novelty detection: self-organization of optimal Bayesian decision, Neural Networks 13 (2000) 1075-1093 https://doi.org/10.1016/S0893-6080(00)00060-5
  6. G. Bugmann, Normalized Gaussian radial basis function networks, Neurocomputing 20 (1998) 97 - 110 https://doi.org/10.1016/S0925-2312(98)00027-7
  7. C. G. Looney, Radial basis functional link nets and fuzzy reasoning, Neurocomputing 48 (2002) 489 - 509 https://doi.org/10.1016/S0925-2312(01)00613-0
  8. L. Marcelino, S. Ignacio, P. Carlos, A new EM-based training algorithm for RBF networks, Neural Networks 16 (1) (2003) 69-77 https://doi.org/10.1016/S0893-6080(02)00215-0
  9. A. Staiano, R. Tagliaferri, W. Pedrycz, Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering, Neurocomputing 69 (13-15) (2006) 1570-1581 https://doi.org/10.1016/j.neucom.2005.06.014
  10. L. Ma, A. Wahab, G. S. Ng, S. Erdogan, An experimental study of the extended NRBF regression model and its enhancement for classification problem, Neurocomputing 72 (2008) 458-470 https://doi.org/10.1016/j.neucom.2007.12.011
  11. A. Staiano, R. Tagliaferri, W. Pedrycz, Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering, Neurocomputing 69 (13 - 15) (2006) 1570-1581 https://doi.org/10.1016/j.neucom.2005.06.014
  12. S. Mitra, J. Basak, FRBF: a fuzzy radial basis function network, Neural Comput. Appl. 10 (2001) 244-252 https://doi.org/10.1007/s521-001-8052-9
  13. W. Pedrycz, Conditional fuzzy clustering in the design of radial basis function neural networks, IEEE Trans. Neural Netw. 9 (4) (1998) 601 - 612 https://doi.org/10.1109/72.701174
  14. N. B. Karayiannis, Reformulated radial basis neural networks trained by gradient descent, IEEE Trans. Neural Netw. 10 (3) (1999) 657-671 https://doi.org/10.1109/72.761725
  15. S. M. Loone, G. Irwin, Improving neural network training solutions using regularization, Neurocomputing 37 (2001) 71-90 https://doi.org/10.1016/S0925-2312(00)00314-3
  16. L. Xu, RBF nets, mixture experts, and Bayesian YingYang learning, Neurocomputing 19 (1998) 223-257 https://doi.org/10.1016/S0925-2312(97)00091-X
  17. W. Pedrycz and K. C. K wak, 'Linguistic Models as a Framework of User-centric System Modeling', IEEE Trans. on Systems, Man and Cybernetics-A, Vol. 36, No.4, pp. 727-745, 2006 https://doi.org/10.1109/TSMCA.2005.855755