실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzschia sp.의 성장 특성

Effect of Attachment Substrate Size on the Growth of a Benthic Microalgae Nitzschia sp. in Culture Condition

  • 오석진 (부경 대학교 해양과학공동연구소) ;
  • 윤양호 (전남대학교 수산해양대학 해양기술학부) ;
  • 산본민차 (히로시마대학 대학원 생물권과학연구과) ;
  • 양한섭 (부경 대학교 해양과학공동연구소)
  • Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • Yoon, Yang-Ho (Faculty of Marine Technology, Chonnam National University) ;
  • Yamamoto, Tamiji (Graduate School of Biosphere Science, Hiroshima University) ;
  • Yang, Han-Soeb (Korea Inter-University Institute of Ocean Science, Pukyong National University)
  • 발행 : 2009.05.25

초록

저서성 미세조류의 성장에 미치는 부착기질의 영향을 알기 위해 서로 다른 크기의 glass bead를 첨가하여 저서성 미세조류 Nitzschia sp.(진해만 클론)의 성장을 조사하였다. 연구에 사용된 glass bead의 크기는 0.09-0.15 mm(G1), 0.25-0.50 mm(G2), 0.75-1.00 mm(G3) 그리고 1.25-1.65 mm(G4)이며, glass bead를 첨가하지 않는 대조구도 설정하였다. Nitzschia sp.의 가장 높은 성장속도(0.37/day)와 최대세포밀도($9,232{\pm}840$ cells/mL)는 가장 작은 크기의 glass bead를 첨가한 G1에서 나타났다. 그리고 성징속도와 최대세포밀도는 glass bead 크기의 증가와 함께 감소하였다(G4의 성장속도와 최대세포밀도는 각각 0.24/day와 $6,397{\pm}524$ cells/mL였다). 더욱이 대조구의 성장속도는 실험구 G1에서 G3의 성장속도보다 상당히 낮았다. 이 결과에서 Nitzschia sp.와 같은 저서성 미세조류를 위한 부착기질은 성장속도 뿐만 아니라 세포밀도에도 큰 영향을 주는 것으로 나타났다. 따라서 부착미세조류의 생리실험을 위해서는 예비실험으로 부착기질의 유무 및 대상 종에 적합한 부착입자의 크기의 고려가 필요할 것으로 보인다.

To understand the effect of attachment substrate on the growth of benthic microalgae, we experimentally investigated the growth of benthic microalgae Nitzschia sp. (Jinhae Bay strain) with additions of glass beads in different sizes. The glass beads used in this study are 0.09-0.15 mm (G1), 0.25-0.50 mm (G2), 0.75-1.00 mm (G3) and 1.25-1.65 mm (G4). No addition of glass beads used as controls. Highest specific growth rate (0.37/day) and maximum cell density ($9,232{\pm}840$ cells/mL) of Nitzschia sp. showed at the smallest glass beads (G1), and the specific growth rate and maximum cell density were decreasing with increasing size of glass beads (specific growth rate and maximum cell density of G4 was 0.24/day and $6,397{\pm}524$ cells/mL, respectively). Moreover, specific growth rate of the control experiment (0.23/day) was significantly lower than their of G1 to G3 experiment. The results indicated that the attachment substrate for benthic microalgae as Nitzschia sp. is important factor which affecting the growth rate as well as cell density. Therefore, the physiological experiment of benthic microalgae seems to be necessary to preliminary experiment, which is addition or not of the attachment suitable substrate and the grain size for the target species of benthic microalgae.

키워드

참고문헌

  1. Brand, L.E., Guillard, R.R.L. and Murphy, L.S., 1981, "A method for the rapid and precise determination of acclimated phytoplankton reproduction rates", J. Plankton Res., Vol. 3, 193-201. https://doi.org/10.1093/plankt/3.2.193
  2. Cahoon, L.B., Nearhoof, J.E. and Tilton, C.L., 1999, "Sediment grain size effect on benthic mircoalgal biomass in shallow aquatic ecosystems", Estuaries, Vol. 22, 735-741. https://doi.org/10.2307/1353106
  3. de Brouwer, J.F.C. and Stal, L.J., 2002, "Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae)", J. Phycol., Vol. 38, 464-472. https://doi.org/10.1046/j.1529-8817.2002.01164.x
  4. Decho, A.W., 1990, "Microbial exopolymer secretions in ocean environments. Their role(s) in foodwebs and inarine processes", Ocenogr. Mar. Biol. Annu. Rev., Vol. 28, 73-153.
  5. Edgar, L.A. and Pickett-Heaps, J.D., 1984, "Diatom locomotion", Prog. Phycol. Res., Vol. 3, 47-88.
  6. Fukami, K., Murata, N., Morio, Y. and Nishijima, T., 2002, "Improvement of eutrophic coastal bottom environments by using an optical fiber and effective psychrophilic bacteria", Fish. Sci., Vol. 68, 617-620. https://doi.org/10.2331/fishsci.68.sup1_617
  7. Guillard, R.R.L. and Ryther, D., 1962, "Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran", Can. J. Microbiol., Vol. 8, 229-239. https://doi.org/10.1139/m62-029
  8. Kim, K.R. and Ki, J.H., 1987, "Studies on chemical and biological processes in the Keum river estuary, Korea, I.The cycle of dissolved inorganic nitrogen: General considerations", J. Ocanol. Soc. Korea, Vol. 22, 191-203.
  9. Kawamura, T., 2004, "Ecology of benthic diatoms", Nippon Suisan Gakkaishi, Vol. 70, 788-789. https://doi.org/10.2331/suisan.70.788
  10. Kawamura, T. and Hirano, R., 1992, "Seasonal changes in benthic diatom communities colonizing glass sides in Aburatsubo Bay, Japan", Diatom Res., Vol. 7, 227-239. https://doi.org/10.1080/0269249X.1992.9705216
  11. Lee, J.-B., Choa, l.-H. and Koh, H.-B., 1999, "Community structure and ecological characteristics of attached diatom in the coastal waters of Cheju Island, Korea", Algae, Vol. 13, 55-66.
  12. McIntyre, H.L., Geider, R.J. and Miller, D.C., 1996. "Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production", Estuaries, Vol. 19, 186-201. https://doi.org/10.2307/1352224
  13. Oh, S.J., Park, D.-S., Yang, H.-S., Yoon, Y.H. and Honjo, T., 2007, "Bioremediation on the benthic layer in polluted inner bay by promotion of microphytobenthos growth using light emitting diode (LED)", J. Korean Soc. Mar. Enviro. Eng., Vol. 10, 93-101.
  14. Oh, S.J., 2008, "Nutrient uptake kinetics of Nitzschia sp. for bioremediation of the benthic layer in a polluted inner bay", J. Kor. Fish. Soc., Vol. 41, 301-304.
  15. Ruangdej, U. and Fukami, K., 2004, "Stimulation of photosynthesis and consequent oxygen production in anoxic bottom water by supply of low-intensity light through an optical fiber", Fish. Sci., Vol. 70, 421-429. https://doi.org/10.1111/j.1444-2906.2004.00821.x
  16. Smith, D.J. and Underwood, G.J.C., 1998, "Exopolymer production by intertidal epipelic diatoms", Linmol. Oceanogr., Vol. 43, 1578-1591. https://doi.org/10.4319/lo.1998.43.7.1578
  17. Staats, N., Stal, L.J., de Winder, B. and Mur, L.R., 2000, "Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms", Mar. Ecol. Progr. Ser., Vol. 193, 261-269. https://doi.org/10.3354/meps193261
  18. Stal, L.J. and de Brouwer, J.F.C., 2003, "Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats", Berichte-Forschungszentrum Terramare, Vol. 12, 109-111.
  19. Suzuki, M. and Yamamoto, T., 2005, "Effects of grain size of substrate on the growth of a benthic microalgae Nitzschia sp.", J. Grad. Sch, Bioshp. Sci. Hiroshima Univ., Vol. 44, 31-38.
  20. Watermann, F., Hillebrand, H., Gerdes, G, Krumbein, W.E. and Sommer, D., 1999, "Competition between benthic cynobacteria and diatoms as influences by different grain sizes and temperatures", Mar. Ecol. Prog. Ser., Vol. 187, 77-87. https://doi.org/10.3354/meps187077
  21. Yamamoto, T., Oh, S.J. and Goto I., 2004, "Effects of temperature, salinity and irradiance on the growth of microphytobenthos Nitzschia sp", Jpn. J. Phycol., Vol. 52, 5-11.
  22. Yoon, Y.H., 2000, "On the spatio-temporal distributions of nutrients and chlorophyll a concentration, and the environmental factors on the variation of phytoplankton biomass in the Shiahae, southwestern part of Korean Peninsula", Korean J. Environ. Biol., Vol. 16, 403-409.