OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems

  • 현명륜 (서강대학교 통신시스템 연구실) ;
  • 최호영 (서강대학교 통신시스템 연구실) ;
  • 홍대형 (서강대학교 통신시스템 연구실) ;
  • 임재찬 (서강대학교 통신시스템 연구실)
  • 발행 : 2009.05.31

초록

본 논문에서는 OFDMA 기반 relay 시스템에서 throughput 성능개선을 위한, Base Station (BS)과 Relay Station (RS)의 sub-cell 커버리지 설정기법을 제안한다. Relay 시스템에서는 BS-RS 링크에서 무선 자원을 추가로 소비하므로, RS간 자원의 재사용을 고려하면 자원의 효과적 사용이 가능하다. 그러나, 이때 신호의 간섭이 증가하므로 단말기의 수신 Signal to Interference and Noise Ratio (SINR)에 영향을 미치게 된다. 그리므로 본 연구에서는 자원 재사용 정도에 따른 사용가능 자원의 증가를 수신 SINR과 함께 sub-cell 커버리지 결정의 요인으로 함께 고려한다. 모의실험을 통한 결과분석을 통해 throughput 성능을 개선할 수 있는 sub-cell 커버리지를, 다양한 자원재사용 패턴에 따라 도출하였다.

In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

키워드

참고문헌

  1. 'IEEE 802.16's Relay TG,' http://www.ieee802.org/16/relay/index.html
  2. IEEE 802.16 TG m, http://www.ieee802. org/16/tgm/index.html
  3. N. Esseling, B.H. Walke and R.Pabst,'Performance Evaluation of a Fixed Relay Concept for next generation wireless systems,'in Proc. IEEE PIMRC, vol.2,Sept. 2004
  4. H. Hu, H. Yanikomeroglu, D. Falconer, and S.Periyalwar, 'Range extension without capacitypenalty in cellular networks with digital fixed relays,' in Proc. IEEE Globecom 2004, vol.5,pp.3053-3057, Dec. 2004
  5. H. M. Zimmermann, J. Eberspacher, and M.Lott, 'Frequency Reuse for Cellular Multi-hopNetworks,' in Proc VTC 2005 Fall, pp.2297-2301, Sept. 2005
  6. S. Wang, H. Yin, and S. Sheu, 'An EffectivePath Selection Metric for IEEE 802.16-basedMulti-hop Relay Networks, 'ISCC 2007. 12th IEEE Symposium on , pp.1051-1056, 1-4 July2007
  7. T. S. Rappaport, Wireless Communications,second ed. Prentice-Hall, 2002
  8. 3rd Generation Partnership Project, 'UMTS;Selection Procedures for the choice of radiotransmission technologies of the UMTS(UMTS 30.03 version 3.2.0),' Report 3GPP TR. 101112, V3.2.0, 3GPP, Apr. 1998
  9. J.E. Berg, 'A recursive Method for StreetMicrocell Path Loss Calculations', in Proc.PIMRC `95, Vol 1, pp 140-143
  10. M. J. Feuerstein, K. L. Blackard, T. S. Rappaport, S. Y. Seidel, and H. H. Xia, ,'PathLoss, Delay Spread, and Outage Models as Functions of Antenna Height for Microcellular System Design', IEEE Trans. VT, Vol. 43, No.3, pp. 487-498, Aug. 1994 https://doi.org/10.1109/25.312809
  11. Y. Oda, K. Tsunekawa, and M. Hata 'Advanced LOS path loss model in microwave mobile communications' IEEE Transactions on VTC, Vol. 49, pp. 2121-2125, Nov. 2000 https://doi.org/10.1109/25.901884
  12. 현명륜, 최호영, 홍대형, 임재찬 'OFDMA 기반Relay 시스템에서 자원 재사용과 커버리지 설정에 다른 Throughput 분석' 2009 한국통신학회추계종합학술발표회