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Abstract
Let {X,|1 <i < n, n> 1} be an array of rowwise negatively associated random variables. In this paper we
discuss n72h(n) max << | Zf:] X,;|/n® — 0 completely as n — oo under not necessarily identically distributed
with suitable conditions for @ > 1/2, 0 < p <2, ap > 1 and a slowly varying function A(x) > 0 as x — co. In
addition, we obtain the complete convergence of moving average process based on negative association random
variables which extends the result of Zhang (1996).
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1. Introduction

Hsu and Robbins (1947) introduced the concept of complete convergence of a sequence {X,} of ran-
dom variables as follows. A sequence {X,} of random variables is said to converge completely to a
constant ¢ if

Z P(X, —c| > €) <oo, forevery > 0.
n=1

Moreover, it was proved that the sequence of arithmetic means of independent identically distributed
(i.i.d.) random variables converges completely to the expected value if the variance of the summands
is finite by Hsu and Robbins (1947). This result has been generalized and extended in several direc-
tions and carefully studied by many authors (see, Pruitt, 1966; Rohatgi, 1971; Gut, 1992; Li et al.,
1992; Ghosal and Chandra, 1998; Hu er al., 1986; Hu et al., 1999; Kuczmaszewska and Szynal, 1994;
Ahmed er al., 2002; Wang et al., 1993). Complete convergence for a sequence of random variables
plays a central role in the area of limit theorems in probability theory and mathematical statistics.
Conditions of independence and identical distribution of random variables are basic in historic results
due to Bernoulli, Borel or Kolmogorov. Since then, serious attempts have been made to relax these
strong conditions. For example, independence has been relaxed to pairwise independence or pairwise
negative quadrant dependence or, even replaced by conditions of dependence such as mixing or mar-
tingale. In particular, many authors showed that many results could be obtained by replacing i.i.d.
condition by uniformly bounded condition. We recall that an array {X,;|1 <i < n, n > 1} of random
variables is said to be uniformly bounded by a random variable X if for all # and x > 0,

sup P(1 X} > x) < P(IX] > x).
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A finite sequence of random variables {X;|1 < i < n} is said to be negatively associated(NA) if for
any two disjoint nonempty subsets A; and A; of {1,2,...,n} and fi and f; are any two coordinatewise
nondecreasing functions,

Cov (fi(Xs i € A1), fo(X;, ) € A2)) <O,

whenever the covariance is finite, If for every n > 2, X1, X2, ..., X,, are NA, then the sequence {X/|i €
N} is said to be NA. This definition is introduced by Alam and Saxena (1981). Many authors derived
several important properties about NA sequences and also discussed some applications in the area of
statistics, probability, reliability and multivariate analysis. Compared to positively associated random
variables, the study of NA random variables has received less attention in the literature. Recently,
some authors focussed on the problem of limiting behavior of partial sums of NA sequences. Su
and Qin (1997) studied some limiting results for NA sequences, Liang (2000) and Baek et al. (2003)
considered some complete convergence for negatively dependent random variables.

The main purpose of this paper, it is to discuss the complete convergence for sums of rowwise NA
random variables under suitable conditions. As an application, we obtain the complete convergence
of moving average processes based on NA random variables which extends the result of Zhang (1996)
and we obtained some coroliaries.

2. Preliminaries

This section will contain a background materials which will be used in obtaining the main results in
the next sections and C will represent positive constants whose value may change from one place to
another.

Lemma 1. (Huetal,1986) Foranyr > 1, E|X|) < oo if and only if

ZnHP(]X] > en) < oo, forany € > 0.
n=1
More precisely,

wUPOX] > n) < EIXY < 14927 ) T PIX] > ),

n=1

27"

e

il
bt

n

Lemma 2. (Matular, 1992) Let (X\i > 1) be a sequence of NA random variables with EX; = 0 and
EX? < co. Then there exists a positive C such that

n .
Pmax(iX)l,...,[X1 + -+ X)) > &) < CZ Var(Xy), forall &> 0.
o=

Lemma 3. (Burton and Dehling, 1990) Ler 33 a; be an absolutely convergent series of real

numbers witha = Y0 a;, b = X7 __ lail Supp;se @ : [-b,b] — R is a function satisfying the
Sfollowing conditions:

(i) ®© is bounded and continuous at a.
(ii) There exist 8 > 0 and C > O such that for all |x| < 8, |®(x)| < Clxl.
Then lim, .o 1/n 32 _ DT a)) = B(a).

J=itl
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Remark 1. Taking ®(x) = |x}4,q > 1, from Lemma 3 we have

q

oo i+n

.1
lim - Z a;| =lal’.
n—oo p1 .

i=—o0 | j=i+1

3. Main Results

Theorem 1. Leta > 1/2,0 < p<2and ap = 1. Let {X,;]1 <i < n,n 2 1} be an array of rowwise
NA random variables with EX,; = 0 for some a < 1 and let sup,,; P(IX,;| > x) < P(X| > x) for all
n and x > 0. Suppose that i(x) > 0 is a slowly varying function as x — oo and let h(x) > C > 0 for
ap = L. If EIX|Ph(|X|Y?) < oo, then

o0

Z nP2h(n) P

n=1

k
:E: )(ni
i=1

Proof: Let Y = n®I(Xy; > n%) + Xul(1X,l < n%) — n9I(X,; < —n®). Then
> en”)
k
:E: )(ni
i=1
k
:E:)(ni
i=1

[vo) o0 k
ap-2 . 3 ap-2 . — .
< Eln h(n)P(g% X, = n )+ 51 n h(n)P[IIISl]an El(Y, EY)
n= n=

max
1<k<n

> en"] < oo, for every €>0.

k

:E: )(ni

i=1

= Z n“’=2h(n)P [max
I1<k<n

n=1

Z n 2h(n)P [max

1<k<n

n=1

>en®, | Xyl <n',1<i< n]

n=1

> en®, there exists i such that |X,;| > n"]

> en”)

ap-2
+ Z n h(n)P[lnsl]gl

i=

= I} + I (say).

First, it is omitted, since we can easily prove that I} < oo.
Next, in order to prove that I, < co, we first prove that

k

n~ " max ZEY,« -0 as n—o oo,
1

I<k<n |4

i=

So,
k

Z EY;
1

k

k
DT EXul( Xl <n%) + ) nP(Xul > )
i=1 i=1

< n % max
1<k<n

n Y max
1<k<n

|

<A™ Y IEXll (X0l < 1) +nP(X] > n%)
i=1
= I3 + 14 (say).
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To prove that I; — G as n — oo and Iy — 0 as n — oo, we first need to prove that

ZkP(k“ <IX] < (k + 1)?) < oo. G.1)

k=1

Without loss of generality, since A(x) > C > 0 for ap = 1, we obtain that

ZkP(k“ <IXl<k+1)M < CZkh(k)P(k" X< k+ 1))
k=1 k=1

< C Y kP (K < IX| < (k+ D™ A(XI7)
k=1
< CEIXPPh(X|7) < o0, by Lemma 1. (3.2)
When ap > 1, since A(x) is a slowly varying function, by choosing N > 0 such that k > N, we obtain
that k'~*?h~Y(k) < 1. Thus, we have that

o N-1 o0
Z kP(K™ < 1X] < (k+ D)) < Z kPG < 1X] < (k+ D) + Z kP(k* < 1X) < (k+ 1))
k=1 k=1 k=N

<C+ Z KPRGOPK® < [X] < (k + 1)%)

k=N
< CEIX| (m%) -0 as n-» o0, (3.3)

which, together with (3.2) and (3.3), yields (3.1).
When 1/2 < a £ 1, since EX,; = 0, we obtain that

I < A" EXIIX] > n%)

<nl™@ Z kTP < |X] < (k+ 1))
k=n

<C Y RPU <IXI < (k+ 1)) =0 as n— oo,
k=n

When « > 1, by (3.1) and Kronecker Lemma, we obtain that
LI = n'EIX|I(X] < n®)
n
< Ccnle Zk"P(k“ <IX|<(k+1)")—0 as n— oo.
k=0
Now, by (3.1), we get

Iy = nP(X| > n%)
<Cn Z P < |X| < (k+ 1))

k=n

< CZkP(k" <IX|<(k+1)*) =0 as n— oo
k=n
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Hence, we have that

k

Z EY,

i=1

n~% max
1<k<n

— 0 as n—o oo,

Next, note that {(Y; — EY;)li > 1} is still a rowwise NA random variables by the definition of NA
random variables. Thus, by using Lemma 2, we get

k
Z(Y,- _EY)| > en"]
i=1

nr 2 p(n) 3 EIY
=1

P22 (n) 3" [EIX 10Xl < 1) + 12 P(Xoil > )]
i=1

(o]

L= Z n*">2h(n)P [1151%1

n=1

<C

1M

IA

Nt

C

=
Il
—_

RPN EIXPI(X] < n) + Z n" n)P(X| > n®)

n=1

IA
@
[

=
]
—_

IA
A
gk

P2 EIXIPI(X] < n®) + Z n?" h(n)P(X| > n)
n=1

=
Il
—

IN
9!

e I 1D

nap—l—Zah(n) ZnZ(IP(kaf < |X| < (k + l)a) + Znap—lh(n) Z P(kll < |X| < (k + 1)0)
k=1

n=1 k=n

IA

(oo} o0 k
C Y Pk <|X| < (k+ DY) Z R ) 4 Z Pk <|X] < (k+ 1)*) Z nP~ h(n)
n=k k=1 n=1

<C Y kPh(1 X |%)P(k“ <1X] < (k+ 1)%)

T
)

< CEIXPh(1X]7) < co.
O

Taking X,; = X;for 1 < i < nand A(x) = log‘2 n in Theorem 1, we can immediately obtain the
following corollary.

Corollary 1. Lera > 1/2, 0 < p <2, ap > 1 and let {X;|i > 1} be an identically distributed NA
random variables with EX| = 0 for some a < 1. If E|X;|P < oo, then we have

D nlog™ nP (Z X > 8n”) <o, forall £>0.

n=1 i=1

Remark 2. The condition of identical distribution can be weakened slightly to be uniformly bounded
in probability. When {X;|i > 1} is a sequence of i.i.d. random variables, if we take p = 1/« for some
0 < p<landlog™?n = 1, then Corollary 1 becomes the result of Bai and Su (1985).
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Corollary 2. Under the conditions of Theorem 1, we have that

1 n
X, — 0 a.s. as n — oo, B34

i=]

Z Xm’
i=1

n(l

Proof:

0o > Z P 2h(n)P(max

me
n=1
oo 2!+\_l
—Z Z ”p‘zh(n)P[ max
ne 1<ksn

)

=0 p=2
o« 1 k
> — 1>€l. 3.5
= lp{za ] Z;X’” ‘E] G2
By Borel-Cantelli Lemma and (3.5), we have
P( Xl 2 €, 10.]:0,
T 1<;<<2'
and hence
k
= 112%, Z;XM — 0 as. as [ — oo, 3.6)

From (3.6) and the fact that

nizljx

i=

me
k

Z Xm‘
i=1

the desired result (3.4) follows and the proof is completed. O

< hm —
[—c0 [ ot ]<n<25

1
< lim — max
00 [¥ 1<kg!

4, Application

In this section, we present one result about the complete convergence of linear processes which follows
from Theorem 1. We give a general version of Zhang (1996} from the identically distributed and ¢-
mixing case to the NA random variables.

Let {X;,i € Z}, where Z, = {1,2,3,--} denote a sequence of random variables and {a;]i € Z.) a
sequence of real numbers with 3,72 _ la;| < co. Define a linear process of the form

j_—DO

Y, = Z X, kez., where Z, ={1,2,3,...}. @1

frzem0
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Theorem 2. Assume that {X;] — o0 < i < oo} is a sequence of NA random variables with EX; = 0.
Let h(x) > 0 be a slowly varying function as x — coand r > 1,1 < t < 2, h(x) is increasing function
Sforr =1and{Yi > 1} be defined as in (4.1) of this section. If for all n and x > 0

sup P (|1X,| > x) < P(IX| > x) and E|X|"h(X]") < o0,

izl

then we have

i " th(n)P (

n=1

>
i1

Proof: Let X,; = a,;X; and a,; = 1/n'" ¥}_, a;1x and note that

Loy, 00 Lo 00
(o - S S-S
k=1 =1

i=~00 k= i=—00

2 sn%] < oo, forall €>0.

By taking p = rt,1 = 1/ and ap = r in Theorem 1, by Lemma 3 and Remark 1, similarly to proof of
Theorem 1, we can obtain the result of Theorem 2, the proof is completed. O
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