DOI QR코드

DOI QR Code

통계 패키지에서의 데이터 접근 방식 비교

Comparing Data Access Methods in Statistical Packages

  • 강근석 (숭실대학교 정보통계보험수리학과)
  • Kang, Gun-Seog (Department of Statistics & Actuarial Science, Soongsil University)
  • 발행 : 2009.05.31

초록

최근에 산업현장에서의 통계전문가들에게는 여러 가지 통계분석기법을 사용한 자료 분석 외에 다양한 형태의 자료 저장장치에서 추출 또는 생성의 과정을 거쳐 분석 목적에 적합한 자료를 구성해야하는 문제에 많이 부닥치고 있다. 본 논문에서는 현재 일반적으로 사용되고 있는 여러 통계 패키지들에서 제공하고 있는 데이터 접근방식을 살펴보고 각 기능들을 비교 분석하고자 한다. 이들 방식에 대한 정확한 이해는 특히 데이터마이닝 등 대용량의 자료를 분석하고자 할 때 데이터 처리과정에서의 어려움으로 발생하는 비용과 시간을 감소시켜주어 통계전문가들이 통계분석에 더욱 많은 작업을 할애할 수 있도록 해줄 것이다.

Recently, in addition to analyzing data with appropriate statistical methods, statistical analysts in the industrial fields face difficulties that they have to compose proper datasets for analysis objectives via extracting or generating processes from diverse data storage devices. In this paper we survey and compare many state-of-the-art data access technologies adopted by several commonly used statistical packages. More understanding of these technologies will help to reduce the costs occurring when analyzing large size of datasets in especially data mining works, and so to allow more time in applying statistical analysis methods.

키워드

참고문헌

  1. 김형주 (2006). <데이터베이스 시스템>, 한국맥그로힐, 서울
  2. 손건태, 안상옥 (2007). , 자유아카데미, 서울
  3. 최종후 (2008). , 자유아카데미, 서울
  4. Microsoft (2009). Win32 and COM Development, MSDN Library, Available from http://msdn.microsoft.com/en-us/library/aa968814.aspx
  5. Minitab (2009). Data and File Management, Online Documentation, Available from http://www.minitab.com/products/minitab/features
  6. Oracle (2005). Oracle Business Intelligence: Concepts Guide, Online Documentation, http://download.oracle.com/docs/cd/B14099_19/bi.1012/b16378 .pdf
  7. R Development Core Team (2008). R Data Import/Export, Version 2.8.0, Available from http://cran.r-project.org/doc/manuals/R-data.html
  8. R Development Core Team (2009). The R interface packages, Available from http://cran.r-project.org/doc/manuals/R-data.html#R-interface-packages
  9. SAS Institute Inc. (1989). The Record Layout of a Data Set in SAS Transport (XPORT) Format, SAS Tech-nical Support document TS-140, http://support.sas.com/techsup/technote/ts140.pdf
  10. SAS Institute Inc. (2007). SAS In-Database Processing: A Roadmap for Deeper Technical Integration with Database Management Systems, Technical Paper, http://support.sas.com/resources/papers/InDatabase07.pdf
  11. SAS Institute Inc. (2008). SAS/ACCESS 9.2 for Relational Databases: Reference. Cary, NC: SAS Insti-tute Inc., Available from http://support.sas.com/documentation/cdl/en/acreldb/59618/PDF/default/acreldb.pdf
  12. SAS Institute Inc. (2009a). The New Data Integration Landscape: Moving beyond ad-hoc ETL to an enteiprise data integration strategy, White Paper, Available from http://support.sas.com/apps/whitepaper/index.jsp?cid=3498
  13. SAS Institute Inc. (2009b). SAS Data Surveyors, Online Documentation, Available from http://www.sas.com/technologies/dw/etl/surveyors
  14. Silberschatz, A., Korth, H. F. and Sudarshan, S. (2005). Database System Concepts, McGraw-Hill, New York
  15. SPSS Inc. (2008). Data Access Pack Installation Instructions for Windows, Online Documentation, Available from ftp://ftp.spss.com/pub/web/drivers/sdap/Documentation/SDAP/en-us/sdapwin.pdf
  16. Statsoft (2009a). STATISTICA Query, Online Documentation, Available from http://www.statsoft.com/uniquefeatures/query.html
  17. Statsoft (2009b). The In-Place Database Processing(IDP) Technology, Online Documentation, Available from http://www.statsoft.com/products/idp.html