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SPECTRAL METHODS AND HERMITE INTERPOLATION
ON ARBITRARY GRIDS

H. 8. JUNG* AND Y. 5. HA

ABSTRACT. In this paper, spectral scheme based on Hermite interpolation
for solving partial differential equations is presented. The idea of this
Hermite spectral method comes from the spectral method on arbitrary
grids of Carpenter and Gottlieb [J. Comput. Phys. 129(1996) 74-86] using
the Lagrange interpolation.
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1. Introduction and preliminaries

For a function f : [~1,1] — R and a set xn := {®o, 21, -, 2N}, N > 1 with
—Il=zy<zy 1< <1 <29 =1,

let Lnixn; f] and Hy{xw; f] denote Lagrange and Hermite interpolation poly-
nomials to f with respect to yny. For the case of Hermite interpolation, we
will always assume that f is differentiable so that Hy[xw; f] is well defined. In
fact, Lalxn; f] and Hy[xw; f] are the unique polynomials of degree < N and
< 2N + 1 satisfying

HyDn; fl(xg) = f(z5)

Lnlxn; fi(z;) = f(z;) and NI fl(xg) = f (@)

(1.1)

for j =0,1,2,---, N, respectively. Let
Q@) = (x — z0)(@ — x1) - (& — ).
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Then more precisely, the Hermite interpolation polynomial Hy[xn; f] is given
by

2N+1
Hu(fl(z) == Hulxw; @) = > fiH;() (1.2)
=0
where ’
fi= f(xj)7 0<j<N
T fl(!lij_(N+1)), N+1<j<2N+1

and the Hermite fundamental polynomials H;(z) are defined by
; <5<
Hj(z) == hi(@), 0<js= N (1.3)
kj_(N+1)(.’I,'), N+ 1 S ¥ S 2N+ 1.

Here, hj(x) and k;(z) are polynomials of degree < 2N + 1 satisfying

h’](ml)= 3,05 h_lj(ml):()’ .]al=071727N (1 4)

kj(l‘l):O, k;‘('rl):&j,la jal__‘ovlazv"'N ‘
such that h;(x) and k;(z) are given by

ve) = (- 5Be-) (oo

ki(x) = (w—xj)<Q/( e ))2

z;)(z — z;

(see [7]). Then we know easily that for 7 € Pan41

N 2N+1
m(@) =Y wlz)Hjx)+ Y (@i ven)Hj(). (1.5)
5=0 j=N+1
[1, 7] serve as good references for the Lagrange interpolation polynomial and
we are interested in the spectral scheme based on Hermite interpolation in this
paper.

Polynomial spectral methods is to approximate the unknown function by in-
terpolation polynomials at some predescribed points and this methods have been
extensively used in numerical solutions of partial differential equations(PDEs).
Especially, [3, 4, 5, 6] treat the spectral methods with the node points related
to orthogonal polynomials of ordinary differential equations such as Chebyshev
polynomials and Legendre polynomials. Carpenter and Gottlieb [1] introduced
the arbitrary-grid spectral method using Lagrange interpolation. In this pa-
per, we consider the spectral method using Hermite interpolations instead of
Lagrange interpolations. Since our new method uses the function values and
its first derivative values, we only need half of the grids comparing with the
Lagrange spectral method [1].

This paper is organized as follows. In Section 2, we introduce the differentia-
tion matrix based on the Hermite interpolation and prove the properties of this
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matrix. In section 3, we consider the Legendre Galerkin method by describing
how to apply our Hermite spectral method for the following hyperbolic system
of conservation laws

Ou  Ou

= _ 2 _ 1.6

ot Oz (16)
subject to given initial and boundary conditions on bounded domains. In section

4, we investigate the relation of two differentiation matrices defined on different
grids. Finally, we give numerical results in section 5.

2. The differentiation matrix using Hermite interpolation

In this subsection, we derive the differentiation matrix using the Hermite
interpolation on N + 1 distinct points

—l=zy<zy_1 <<z <z29=1

where z1,%3,...,25_1 are arbitrary. First, we consider the derivative of Hy
[f1(z).
2N+1
dHy[f](z)/dz = Zf e)Hi(@) + Y f (@ (v Hj(). (2.1)
J=0 j=N+1
Then we have by (1.1) for k=0,1,2,...,N
2N+1

Fae) = Hylf) (zx) = ijH (zx)

2N+1

Z (@) Hj(zi)+ Y f(@imveny) Hi(z)

=0 j=N+1

and since
2N+1

PHAf](a)/da® = Half)"(@) = Y £i1@)

we have for k. =0,1,2,...,N
IN+1

Hulf) (ze) = Z FiH] ()

N 2N+1
- waf H(zx) Z @ vy HY (xx). (2.2)
J=0 j=N41

Therefore, if we define £’ and f as

t= [f'($0)7 o fi@N), H [ (), - - 7HN[f]“(l’N)}T
and

£ = [f@) - faw). flao) - Fan)]
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then we have the following equation from the equations (2.1) and (2.2):

' = Dyf (2.3)
where the differentiation matrix Dy is given by
[ Ho(zo) -+ Hj(wo) -+ Hyyg(zo) ]
H/(‘IN) Hl‘(:TN) ... H! (-TN)
Dy = 0 J 2N+1 2.4
HE\ Hf(wo) o Hi(wo) - Hiyy(o) @4
| Hy(zn) -+ Hj(zn) -+ Hiyy(zw) |

On the other hand, there is an alternative representation of the derivative of
Hn[f](z) which is denoted by

N 2N+1
dHN[fl(z)/dz =Y f'(z;)Hi(x) + Y HN[f)"(@-(v4)Hylx).  (2.5)
Jj=0 J=N+1

The equation (2.1) is obtained by the derivative of the equation (1.2) and we
can obtain (2.5) using the fact that dHy[f](z)/dx is a polynomial of degree
2N. Here, since (2.1} is identical to (2.5), we can make a statement that (2.1)
and (2.5) are also the same in the weak form. That is, the difference between
these expressions is orthogonal to all polynomials of degree < 2N + 1 so that
we have for 0 <[ < 2N +1

/_1 (Z[f(%')Hﬁ-(x) = f(2;)Hj()] (2.6)
2N+1 ”
+ Z [f' (@) Hj (@) — HN[f]H(xj—(N-l—l))Hj(a?)])Hl(I)dI =0.
§=N+1

Here we introduce the matrices M(= (m;, ;}) and S(= (s1;)) with the entries

1 1
my; = / Hj(x)H;(x)dr and s;= / Hj(z)H(x)dx. (2.7)
-1 -1
Then we obtain the following equation from the above equation (2.6):
N 2N+1
> omuif )+ Y mu RN (@5 (vr) (2.8)
Jj=0 j=N+1
N 2N+1
=Y sif@)+ Y s (mi—vey), 0<I<2N 41
=0 J=N+1

This equation (2.8) becomes
Mf’ = Sf. (2.9
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From the equation (2.3) and (2.9), with the assumption that M is invertible

Dy =M"!S (2.10)
must be satisfied. In fact,
2N+1
MDyg)iy = Z mi i1

2N+1
= /H ZH o) Hi(z;)+ > Hi(@)H(zj_n4) | da
j=N+1
1
/Hz(a:)Hl’(m)dm
-1
Sil-

Here, we get the third equality of the above equation since Hj(z) is a polynomial
of degree < 2N +1 and using (1.5). Assuming that M is invertible, this proves
(2.10).

In order to approximate the derivative of the function we have defined a new
Hermite spectral method using Hermite interpolations. We have rewritten the
derivative matrix Dy defined in (2.4) as (2.10) using matrices M and S. We
will investigate the attractive properties of the matrices M and 8 in Lemma 2.1
and Lemma 2.2.

ll

Lemma 2.1. The matriz M in (2.7) is a symmetric positive-matriz.

Proof. Tt is easy to see that from the definition of m; ; in (2.7) the matrix M
is symmetric. Now we prove that M is a positive definite. To show that the
matrix M is a positive definite, we first introduce a vector V which is a 2N + 2
component vector:
V = (’U(), e ,UQN_H).
Then we have
2N+12N+1
VIMV = Y S mi v (2.11)
i=0  j=0
1 2N+12N+1

/ Z Z viH;(z)v; Hj(x)dx

-1 i=0 j=o0

1 /2N+1 2

—1\ 4=0

It

The equality sign holds only if V is the null vector. g

We can state the equation (2.11) is a vector space norm. To see the rela-
tionship between a vector space norm and a function space norm we consider a
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polynomial v(z) that takes the values of its components at the grid points z;.
We define a polynomial v(z) of degree 2N + 1 satisfying :

v(x;) = v, 0<j<N (2.12)
v'(z;) =vjgns1, 0SG<N
so that v(z) = Z2N+1 i H;(x). Then

1 2N+12N+1

ViIMV = / > Y wHi(zw;Hy(z)dz (2.13)

—t i=0 j=0

= / 2(x)d;c > 0.
-1
Thus, the vector space norm VI MYV is equivalent to the function space norm
f_ll v (z)dx
Lemma 2.2. Let S be the defined in (2.7) and let 'V be defined as before. Then,
1
vTsv = 5(1}3 —v3). (2.14)

Proof. We first show that S is almost antisymmetric. We defined the matrix
s1; in (2.7). Using integration by parts, we obtain the following:

/ H Hl dl‘

(DH(1) — Hy(=1)Hi(=1) = s;,-
By the definition of the Herrmte fundamental polynomials H;(z), since H;(1) =
5j’0 and H](-——l) = 04,N,

S5+ 841 = Hj(l)Hl(].) — Hj(——l)Hl(—l) = j’()(sl,() — (53'71\/5[’1\[.

31,5

Thus,
2N+12N+1 1 2N+12N+1
visv = Z Z 8i,jUiV; = Z Z (81,5 + 85,i)viv;
=0 j=0 =0 5=0
1 2N412N 41 1
= 3 Z Z (81,0050 — 8;,n 83, N )vivy = 5 (u5 — Vi)
This completes the proof of Lemma 2.2. O

As before, let v(z) be the polynomial of degree 2N + 1 such that (2.12) is
satisfied. Then,

2N+12N+1 1 2N+12N+1
visv = Z Z 84, jUU; = / Z Z vi Hy(x)v; H(z)dx
i=0 =0 -1 =0 ;=0

! 7 1 2 1 2
[ v @da = 5020) = (1) = 50 - k)
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3. The Legendre Galerkin method on arbitrary grids

In this section we describe how to apply our new Hermite spectral methods
to the partial differential equation :

Ui(z,t) = Uglz,t), -1<zx<1
U(z,0) = f(z)
Uu@a,t) = g@).

To use a new method, we consider another equation obtained from the spatial
derivative of the above equation:

Uiz, t) = Usla,t), Usl(z,t) = Up(z,t) -1<z<1
U(z,0) = f(z), Ug(z,0) = f(=) (3.15)
Ut = g, U(Lt) = g

Here, we use the fact U(z,t) = U,(z,t) to obtain Uy(1,t) = ¢'(t). Now we
consider the Hermite spectral method to apply the equation (3.15). We find a
vector

u = [u(a:o,t),~-,u(xN,t),u'(xo,t),-‘-,u'(a:N,t)}T

T
= [uo(t)a o un(t), veo(t), ’UE’N@}

that satisfies
du
ME = Su — meplug — g(t)] — meeni1us0 — ¢'(t)] (3.16)
where e; is a unit vector which the ¢ 4+ 1-th component is 1. The last two terms
in equation (3.16) accounts for a weak imposition of the boundary condition.
For this technique, see [2]. In the following, we estimate the appropriate 7y and

79 for stability of the numerical schemes.

Theorem 3.1. The method described in (3.16) is stable for 1 > 1/2 and
T2 Z 0

Proof. We knew the matrix M is a symmetric positive-matrix. Multiplying u”
to (3.16) and using (2.14) we obtain
1d 1
——u'™Mu = §(u3 —u%) —muTeglug — g(t)] (3.17)
—rulenii[uzo— g (t)].
For stability, we only consider the case g(t) = ¢'(t) = 0 because the error

satisfies the homogeneous boundary condition. We can clearly determine in
this case that if 71 > 1/2 and 7 > 0, then

1 1
s (Fon)d- kom0 @)

and stability exists in the norm induced by the positive definite matrix M. O
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Considering the polynomial un(z,t) € Pany1 we have

1d ! 1d
-z t 2 — - TM
5% _luN(:v, )dx 5 Mu

1 1
= (5 —Tl) 'U,g - Eu?\] - 7-2714270

_ <% - n) w(l, )2 — %u(—u)? — raua(1, )2,
Thus, for the polynomial uy(z,t) € Pony1 we have stability in the usual Ho
norm, provided 7 > 1/2 and = > 0.
Now, by multiplying equation (3.16) by M
obtain
du

d_t = DHU - TlM_le()[uO - g(t)] — TQM_10N+1[’U@70 — gl(t)]. (319)

Theorem 3.2. Let M be the mass defined in (2.7). Define the residual vector
r by

! and using equation (2.10) we

r:= TlM_leo[uO — g(t)] + T2M~leN+1[u$’0 — g'(t)].

Then
r=aa+ b (3.20)
where &, (3, a, and b are defined as follows.
a = 7ifug— g(t)] + enm2luzo — ¢ (1)),
B = —mfugo—g'(1),
and a = (a;)?; and b = (0:)28F with
; <1<
a; = { Fal@d, 0sis N (3.21)
Ry(zi-(v+1)), N+1<i<2N+1
and
; <1<
b = Rf(””z)’ OsisN (3.22)
Rb(xi—(N+1))7 N +1 _<_ 2 S 2N+ 1.
Here, Pn(x) is the Legendre polynomial of degree N and Pyn(1) =1, and
ey = 2N? 44N + %,
Ra() Pinia(@) + Py ()
2 b
Ry(z) = P2"N+3(73) + 3P2”N+2(:v) + 3P2”N+1(-77) + P2”N(9U)

8
Proof. To prove (3.20), we will show that

aMa + SMb = 1eg [UO - g(t)] + T2€N+1 [uz,o — g'(t)].



Spectral methods and Hermite interpolation on arbitrary grids 971

We first consider some properties. Ry (z), Ry(z) and Ry(x) are primitive func-

tions of Ry(x), Ry(z) and Ry(x) such that they are defined as follows, respec-
tively.

~ P.
Ru(z) = a2 () ‘;'P2N+1(1')’

5 _ P2/N+3(5E) + 3P2/N+2(x) + 3P21N+1($) + Py ()
Rb(l‘) - 8 9
= _ P2N+3(£L‘) + 3P2N+2(.’L‘) + 3P2N+1($) + PQN(.’L‘)
Rb(x) = 3 .

Then Ra and 1%1, are orthogonal to Pan and Poy_1, respectively. Since

Pv(1) =1, Pn(-1) = (-1)VPn(1)

and
P = TEDN ) = (¥ p)
(see [7]), we have that
Ru(1) = Ry(1) =1, Ru(~1) = Ry(~1)=0 (3.23)
and
Ry(1) =cy, Ry(-1)=0. (3.24)

From these properties we have for 0 <1 < 2N +1
2N+1 2N+1

{Ma); = Zml]aj /Hl ZH x)a;dx

= [ Hi(z)Ru(z)dz by (3.21) and R.(z) € Pani1

= Hx) / Hi(z

= H()R() —1)Ra(—1) = Hy(1) = b10.
This induces that

Ma = eg. (3.25)
Similarly, we also have for 0 <[ < 2N + 1,

1
(Mb), = / 1Hl(a:)Rb(ac)da: by (3.22) and Ry(z) € Pans1

/ da

= Go-en—On-0—(Ong1-1— 51,2N+1 -0)

1
= Hl(ﬂc)f%b(:v)

-1

Il

endLo — O N41-
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This means that
Mb = cyep — en+1- (3.26)
Thus, we have from (3.25), and (3.26) that
aMa + fMb
= aeo+ B(cnveo —en+1)
(11[uo — g(t)] + enTeluz0 — g'(t)])eo — T2[uz0 — 9'(t)](cveo — en1)
T1{uo — g(t)]eo + T2[uz,0 — ¢'(t)]en+1-

This completes the proof. O

Theorem 3.2 sheds light on the connection between Legendre Galerkin method
and the method defined in (3.16) that uses the arbitrary grid points z;.

Theorem 3.3. The method defined in (3.16) is equivalent to the Legendre
Galerkin method.

Proof. We can derive the error equation using polynomial un(xz,t) of degree
2N +1:

UN(:L‘,t) B UN(J:, t)
ot ox
_ Pvee(@) + Py (@) ﬁPQ/IN+3 (z) + 3PN 12 (®) + Poyga () + Pin(x)
2 8
= —-aRa(a:) - ﬂRb(SL‘) S 'P2N+1.

For any polynomial man4+1 € Pont1 with mony1(1) = w4 (1) = 0 by (3.23)
and (3.24)

1
(Raa7T2N+1) = /RG(I)W2N+1(.’L‘)d.’]3
1
~ 1 1 -
= Ry(z)man41(z) —/ Ra(x)mhn 41 (x)de
1 Ja
= Ro()men41(1) = Ra(—1)man41(~1) =0
and
1
(Rp, man41) = / Ry(z)man11(x)dz
—1
5 1 - 1 1.
= B@mvn@)| —RB@mya@| + [ Biaeds
-1 -1 -1

= Ry(Dman41(1) — Re(—D)man11(—1)

—(Bo (1)1 (1) — Bo(—1)mhya(—1))
= 0.



Spectral methods and Hermite interpolation on arbitrary grids 973

This means that for any polynomial mon+1 € Pan 41 with moni1(1) = w4 (1) =

0,
un(z,t)  un(z,t)
- =0.
( o1 e s T2N+1
Thus, the method defined in (3.16) satisfies the definition of the Legendre
Galerkin method. ]

4. Two Hermite differentiation operators

In this section, we will show that two differentiation operators defined on
different grids are similar and the modified differentiation matrices produced by
(3.19) are similar.

In order for showing the relationship between differentiation matrices based
on different grid-point distributions we consider two grids z; and y; (j =
0,1,---,N). We define Hf(z) and H}’ (z) using Hermite interpolation poly-
nomials as in (1.3) and (1.4) of degree 2N + 1 based on the set of points z; and

y;, respectively. So we obtain two differentiation matrices DY, and D¥;:

[ HE'(x0) HY'(20) Hiy ' (z0) ]
Do — Hgi/(mN) H]zi/(:z:N) H§N+1'H(a:1v)
7 HE" (xo) HY (o) Hinya (o)
L (:)E”(JUN) Hfﬂ(xN) H2ZN+1”(517N) J
and ) , . )
H{ (yo) ij (vo) HgN+1 (y0) 1
DY — Hgi/(yN) ijlu(l/N) HgNHj/(yN)
" HY" (y0) HY" (yo) HYn oy (v0)
yll: yH: Yy .N
| HY (yn) HY (yn) Hiy1 (yn) |

The following theorem shows that the two matrices are similar.

Theorem 4.1. Define the matriz Ty by

[ H§' (o) Hf,(?/o) H21N+1/(3/0) ]
H (yn) HE (yv) Hey s (o)
Ty = Q J 2N+1 4.27
# Hg" (yo) H" (yo) Hiyn" (o) (4.27)
L H" (yn) Hf“(yN) H§N+1”(?JN) J
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Then
B Hg/(ﬂm) e HJyl(Z‘Q) cee H:2yN+1/(xO) ]
HY(an) - HY(ay) - Hiyy'(an)
_— s ; 2N+1 4.28
H Hé’"(mo) . H;-!N(ZEO) cee HgN+1”($0) ( )
- Hg”($N) H]y”(xN) HgN+1//(:cN) ]
and
DY, = Ty D4 T3, (4.29)

Proof. From (1.4) and (1.5) we have for 0 <4 < Nand 0 < j <2N +1

N 2N+1

z z /
S OHFW)H! )+ Y HE(w)HY (mi-(ven) = HY (4:) = 6
=0 I=N+1

and for N+1<i<2N+1and0<j<2N+1

N 2N+1

S H (ieven)HY @) + Y HE e vn) HY (@1—(v41))
=0 I=N+1

= HY(yi_(v+1) =01

This means that the product Ty and the right hand of (4.28) is the identity
matrix I and by the same reason, we also have the product the right hand of
(4.28) and T is I. This implies (4.28). Now, we will prove (4.29). The (i, 5)
element of Ty D% Ty is

2N+1

> (TuD%)ia(Tg -
1=0
From (1.5) we have for 0 <i < N
N 2N+1

(TuDf)i = Y Hiw)H (@) + Y Hi(w)H (@x-v+)
k=0 k=N+1

= H{'(y)
and for N+1<i<2N +1

2N+1

N
(TuDg)ia = > HE (yie (1) HY (k) + > B ((gi-v+ 1)) HE (@h—(van))
k=0 k=N+1

= H" (yi—(n+1))
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so that the (i, j) element of Ty D% T" is for 0 < i < N,
IN+1 N 2N+1
2 MGt = X HE ) H] + 3 )R v
1=0
= H]y'(yi) = (4, 7) element of DY,
and for N <i < 2N +1,
2N+1

> H (Wimvr) (T i
=0

2N+1

N
= ZHf//(yi—(NH))HJy(JCl)*’ Z HY" (yie (v HY (21— (v 41))
I=N

= H]’-’”(yi_(NH)) = (4,7) element of DY,.

Thus, (4.29) is proved. .

Let us consider a modified differentiation matrix. The differentiation ma-
trix produced in equations (3.19) and (3.20) takes account of the boundary
conditions:

DH - ’7'1A1 — CNT2A2 + TQB
where the boundary matrices A;, A; and B are defined as
(A1)ij = aidj0, (A2)ij = aidjny1 and  (B)i; = bidjn41.

Suppose now that we have two different grid-point distributions z; and y;. We
have proved in Theorem 4.1 that D% and DY, are similar,

DY, = Ty D} Ty'

where the matrices Ty and Tj' are defined in (4.27) and (4.28). We will
show that the same similarity transformation exists for the modified Hermite
differentiation matrices. That is,

DY —~ miAiy — eneAay + 12By = Ty (DY ~ 11 A1 — enToAse + 7By Tyt
or
Ay =TyATy', Asy=TyAs, Tyt and B, = TyB, Ty . (4.30)
Here, when af and a! are defined in (3.21) based on the set of points z; and

Y5, respectively, (A1z)i;j := afd; 0 and (A1y)i; := a?d;0. The others are defined
similarly.
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Consider element (i, j) of THAlzTgl. Then since H;.’(zo) = 4,0 by (1.4), we

have
2N+12N+1
(THAl-'ETI;l)i,j = Z Z (TH)i,m(Alz)m,l(TI;l)l,j
=0 m=0
2N+12N+1
= 3 Y amaoTm)im(Tr
=0 m=0
2N+1
= 0] Z a':rcn TH)zm
m=0
2%? HE (vi), 0<i<N
= a
=0 yioven)y N+1<i<2N+1
/9 0 < ; < N
= 5,04 Ralvi) <i<N e
R.(yi—(v+1)), N+1<i<2N+1
which proves the first term of (4.30). Similarly,
2N+1
(Ta ATy iy = T v+ ) a5 (Tr)im
m=0
2N+1 '
HZ (yi), 0<i<N
= ijl(-TO) Z afn ml(y) 1 '
m=0 HY (Yi-(v+1y)y N+1<i<2N+1
Ra(y:) 0<i<N
= 9 ’ = (Ag)i s
JNH {RZ(%‘—<N+1>), N+1<i<2N+1 (Azy)i
and
2N+1
(TuBeTy' )iy = (Tg')nvers Y, br(Ta)im
m=0
2N+1 .
= HY(z sz HE (ys), 0<i<N
m=0 2 (yimve1), N+1<i<2N+1
— s Ry(y:), 0<i<N B,
P y(Yi—(ve1)), N+1<i<2N+1 yrna

which prove the rest of (4.30). Therefore, we can say that the similarity trans-
formation is valid even for the modified Hermite derivative matrix.

5. Numerical results

In this section, we compare the spectral method using the Hermite interpo-
lations(HSM) with the spectral method using the Lagrange interpolation(LSM)
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t=0 t=2
mesh L1 L2 Loo L1 L2 Loo
5 3.149E-5 | 6.034E-6 | 1.634E-6 | 7.617E-5 | 8.657E-6 | 1.472E-6
7 6.766E-9 | 1.581E-9 | 5.166E-10 | 3.784E-9 | 4.678E-10 | 1.723E-10
10 | 5.700E-15 | 1.648E-15 | 6.578E-16 | 5.511E-15 | 6.902E-16 | 3.339E-16
TABLE 1. Hermite spectral method on the uniform grids
t=0 t=2
mesh L1 Lz Loo L1 L2 Loo
11 2.471E-5 | 6.099E-6 | 2.167TE-6 | 3.337E-5 | 5.536E-6 | 3.874E-6
15 6.984E-9 | 2.124E-9 | 9.051E-10 | 2.970E-9 | 5.059E-10 | 2.515E-10
21 | 7.669E-15 | 2.951E-15 | 1.557E-15 | 2.924E-15 | 7.439E-16 | 3.863E-16
TABLE 2. Lagrange spectral method on the uniform grids
t=0 t=2
mesh Ll L2 Loo L1 L2 Loo
5 1.807E-5 | 2.574E-6 5.834E-7 1.244E-5 1.449E-6 | 2.568E-7
7 2.062E-9 | 2.854E-10 | 5.999E-11 | 1.546E-9 | 1.884E-10 | 7.044E-11
10 4.563E-16 | 6.110E-17 | 1.308E-17 | 3.296E-16 | 4.231E-17 | 2.120E-17

TABLE 3. Hermite spectral method on the Chebyshev GL grids

t=0 t=2
mesh L1 L2 Loo L1 L2 Loo
11 8.035E-6 | 9.878E-7 | 1.872E-7 | 1.258E-5 | 1.472E-6 | 2.689E-7
15 8.950E-10 | 1.093E-10 | 2.097E-11 | 1.532E-9 | 1.902E-10 | 8.100E-11
| 21 1.910E-16 | 2.338E-17 | 4.515E-18 | 8.054E-16 | 2.038E-16 | 1.891E-16

TABLE 4. Lagrange spectral method on the Chebyshev GL grids

at the Chebyshev GL grid points and the uniform grid points. More precisely,
the linear partial differential equations (3.15) are solved with initial condition,
f(x) = sin{mz) , boundary condition, g(t) = sin(n(1+¢)), and the exact solution
u(x) = sin{m(z + ¢)). For the ODE solver fourth-order Runge-Kutta method is
used with fixed time step. Here, we present the L;,Lq, and L., absolute errors
at t = 0 and ¢t = 2 for HSM(5,7,and 10 points) and LSM(11,15, and 21 points,
resp.) at the uniform grids (Table 1 and 2) and the Chebyshev GL grids (Table
3 and 4).

Figure 1. The error function on the uniform grids

: for (a),(b) ; using 5 points with

Hermite Spectral Method (HSM) and 11 points Lagrange Spectral Method (LSM) at
t =0 and ¢t = 2 resp., for (c),(d) ; 7(HSM),15(LSM) and for (€),(f) ;
10(HSM),21(LSM) at ¢t = 0 ((a),(c),(e)) and at t = 2 ((b),(d),(f))
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Figure 2. The error function on the Chebyshev GL grids : (a),(b); using 5 points
with Hermite Spectral Method (HSM) and 11 points Lagrange Spectral Method
(LSM) at t = 0 and ¢ = 2 resp., for (c),(d) ; 7(HSM),15(LSM) and for (e),(f) ;
10(HSM),21(LSM) at t = 0 ((a),(c),(e)) and at t = 2 ((b),(d),(f))
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