FULL NON-RIGID GROUP OF 2,3,5,6-TETRAMETHYLEPYRAZINE AS WREATH PRODUCT AND ITS SYMMETRY

  • Arezoomand, Majid (Department of Mathematical Science, Isfahan University of Technology) ;
  • Taeri, Bijan (Department of Mathematical Science, Isfahan University of Technology)
  • 발행 : 2009.05.31

초록

The non-rigid molecule group theory in which the dynamical symmetry operations are defined as physical operations is applied to deduce the character table of the full non-rigid molecule group (f-NRG) of 2,3,5,6-Tetramethylpyrazine The f-NRG of this molecule is seen to be isomorphic to the group $\mathbb{Z}_3{\wr}(\mathbb{Z}_2{\times}\mathbb{Z}_2)$, where $\mathbb{Z}_n$ is the cyclic group of order n, of order 324 which has 45 conjugacy classes. We determine the some properties and relations between characters of the group. Also, we examine the symmetry group of this molecule and show that its symmetry group is $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

키워드

참고문헌

  1. A. R. Ashrafi and M.R. Ahmadi, New Computer Program to Calculate the Symmetry of Molecules, Central European Journal of Chemistry, 2005, 3, 647-657. https://doi.org/10.2478/BF02475193
  2. A. R. Ashrafi, On Non-Rigid Group Theory for some Molecules, MATCH Commun. Math. Comput. Chem. 2005, 531, 161-174.
  3. A. R. Ashrafi and M. Hamadanian, Group theory for TetraamminePlatinum(II) with $C_{2v}$ and $C_{4v}$ point group in non-rigid system, J. Appl. Math. & Computing. 2004, 14, 289-303. https://doi.org/10.1007/BF02936115
  4. A. R. Ashrafi, On symmetry properties of molecules, Chem. Phys. Letters, 2005, 403, 75-80.
  5. A. R. Ashrafi andM. Hamadanian, Symmetry Properties of Some Chemical Graphs, Croat.Chem. Acta. 2005, 78, 159-163.
  6. K. Balasubramanian, The symmetry groups of nonrigid molecules as generalized wreath products and their representations, J. Chem. Phys. 1980, 72, 665-677. https://doi.org/10.1063/1.438963
  7. K. Balasubramanian, Group theory, nuclear spin statistics and tunneling splittings 1,3,5-triamino-2,4,6-trinitrobenzene, Chem. Phys. Letters. 2004, 398 15-21. https://doi.org/10.1016/j.cplett.2004.09.032
  8. K. Balasubramanian, Graph theoretical perception of molecular symmetry, Chem. Phys. Letters 1995, 232, 415-423. https://doi.org/10.1016/0009-2614(94)01382-6
  9. M. R. Darafsheh, A. R. Ashrafi and A. Darafsheh, Group Theory for Tetramethylethylene, Acta Chim. Slov. 2005, 52, 282-287.
  10. G. S. Ezra, On the symmetry properties of non-rigid molecules Semifaetorizability of the isometric group, Molecular Phys. 1981, 43(4), 773-783. https://doi.org/10.1080/00268978100101681
  11. G. S. Ezra, Symmetry Properties of Molecules, Lecture Notes in Chemistry 28, Spinger, 1982.
  12. W. C. Herndon, in: R. B. King (Ed.), Studies in Physical and Theoretical Chemistry, Vol. 28 Chemical Applications of Graph Theory and Topology, Elsevier, Amsterdam 1983, pp. 231-242.
  13. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1978.
  14. M. Randic, On discerning symmetry properties of graphs, Chem. Phys. Letter 1976, 42, 283-287. https://doi.org/10.1016/0009-2614(76)80365-X
  15. M. Randic, On the recognition of identical graphs representing molecular topology, J. Chem. Phys. 1974, 60, 3920-3928. https://doi.org/10.1063/1.1680839
  16. M. Randic and M. I. Davis, Symmetry properties of chemical graphs. VI. isomerizations of octahedral complexes, Intern. J. Quantum Chem. 1984, 26, 69-89.
  17. Y. G. Smeyers, Introduction to group theory for non-rigidmolecules, Adv. Quantum Chem. 1992, 24, 1-77. https://doi.org/10.1016/S0065-3276(08)60100-8
  18. Y. G. Smeyers, in: Structure and Dynamics of Non-Rigid Molecular Systems, Y. G. Smeyers (ed.), Kluwer Academic, Dordrecht. 1995, pp. 121-151.
  19. Y. G. Smeyers and M. Villa, A study of the internal dynamics of trimethylamine by means of the non-rigid group theory, J. Math. Chem. 2000, 28(4), 377-388. https://doi.org/10.1023/A:1011095021858
  20. A. J. Stone, Computation of character tables for non-rigid molecules, J. Chem. Phys. 1964, 41, 1568-1579. https://doi.org/10.1063/1.1726124
  21. N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL. 1992.
  22. M. Schonert et al., GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1995.
  23. A. Moghani, A.R. Ashrafi and M. Hamadanian, Symmetry properties of tetraammine platinum(II) with $C_{2v}$ and $C_{4v}$point groups J. Zhejiang University Science, 2005, 6, 222-226..