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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS
FOR SINGULAR THREE-POINT BOUNDARY VALUE
PROBLEMS
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ABSTRACT. In this paper, the singular three-point boundary value problem

() + f(t,u) =0, te(0,1),
u(O) =0, u(l) = au(n)v

is studied, where 0 < 7 < 1, « > 0, f(¢,u) may be singular at u = 0.
By mixed monotone method, the existence and uniqueness are established
for the above singular three-point boundary value problems. The theorems
obtained are very general and complement previous know results.
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1. Introduction

The study of multi-point boundary value problems for linear second-order or-
dinary differential equations was initiated by II’in and Moiseev [1,2]. Then Gupta
[3] studied three-point boundary value problem for nonlinear ordinary differen-
tial equations. Since then, the more general nonlinear multi-point boundary
value problems have been studied by many authors, we refer the reader to [5-
8] for some existence results of nonlinear multipoint boundary value problems.
But so far, for the singular multi-point boundary value problems, to the author’s
knowledge, few papers have been seen in the literature.

P. K. Singh [9], the existence of a positive solution is obtained for the second-
order three-point boundary value problem

y' + flz,y) =0, 0<2 <1,
y(0) =0, y(1) = y(p),

Received November 8, 2007. Revised February 16, 2008. Accepted March 10, 2008.
*Corresponding author.

© 2009 Korean SIGCAM and KSCAM .
895



896 Chunmei Miao Weigao Ge

where p € (0, 1) is fixed and f(z,y) is singular at x = 0, y = 0, and possibly at
y = 0o. The method applies a fixed-point theorem (Gatica, Oliker and Waltman
[4]) for mappings that are decreasing with respect to a cone.

Xu [10] considered the singular three-point boundary value problem

{ y'(t) + f(t,y) =0, te(0,1),
y(0) =0, y(1) = ay(n),

where 0 < 1, an < 1, and f(t, u) may be singular at © = 0. By using the method
of fixed point index, obtained the multiplicity results for positive solutions.

In paper [11], Ma by using some new existence principles to get positive
solutions of the following nonlinear three-point singular boundary value problem

(¢p(w)) +a(t) f(t,u) =0, t€(0,1),
subject to
u(0) — g(u'(0)) =0, u(1) — Bu(n) =0,
or
u(0) — au(n) = 0, u(l) — g(u'(1)) =0,
where f(t,u) may be singular at u = 0 and ¢(t) may be singular at ¢t =0, 1.

Most of the above results told us that the boundary value problems had at
least single and multiple positive solutions, there is no result on the uniqueness
of solution in them.

In this paper, we consider the following singular three-point boundary value
problem

{ W)+ f(t,u) =0, t€(0,1), w)
w(0) =0, u(1) = au(n), :
where ¢ > 0, 0 < < 1, f € C((0,1) x (0, +00), (0, 4+00)) and f(t,u) may
be singular at u = 0. Our idea comes from the fixed point theorems for mixed
monotone operators ([12-15]). By mixed monotone method, the existence and
uniqueness are established.

For the sake of simplicity, let us denote some properties which will be used in
next theorems and propositions:

(H1)0<n<1,0<a<;;

(H) f € C((0,1) x (0,+59), (0, +00)), f(t,x) = a(t)]g(x) + h(z)] on (0,1) x
(0, 4+00), where g : [0,400) — [0,+00) is continuous and nondecreasing, h :
(0,400) — (0,+00) is continuous and nonincreasing, ¢ € C(0,1) N L0, 1],
q(t) > 0 on (0,1).

2. Preliminaries
Consider the Banach space E = C[0, 1] with the norm ||u|| = Jnax |u(t)], P
be a normal cone of the Banach space E, and e € P with ||e]| < 1, e # 8. Define
Qe = {z € P|z # 0, there exists constants m, M > 0 such that me < z < Me}.
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Definition 1. ([15]) Assume A : Q. X Q. — Q.. A is said to be mized
monotone if v1 < z2( 1,22 € Q.) tmplies A(zy,y) < A(za,y) for any y € Q.,
and y1 < yo( y1,y2 € Q.) implies Az,y1) > A(x, ) for any 7 € Qe " € Qu
is said to be a fived point of A if A(z*,x™) = z*.

Theorem 1. ([12]) Suppose that A : Q. x Q. — Q. is a mized monotone
operator and there exists constant 3, 0 < 3 < 1, such that

1
Altz, ?y) > tFA(x,y), Yo,y € Qe 0 <t < 1. (2.1)

Then A has a unique fized point x* € Q.. Moreover, for any (zo, o) € Qe X
Qe, zp = A(xn—lvyn—l)a Yn = A(yn—lwrnAl)a n = 12.., Satisfy Tn —
T*, Yyn — x*, where

|zn — 2%|[ = o(1 = 7%"), [lyn — 2*|| = 0(1 —1%"), 0 <r < 1,

T 48 a constant from (zg, o).

Theorem 2. ([15])Suppose that A : Qo x Q. — Q. is a mized monotone operator

and there exists constant 3, 0 < 8 < 1, such that (2.1) holds. If z3% is a unique

solution of equation A(z,x) = Az, A > 0, in Q., then ||z} —x} || — 0, X —

Ao IfO0 < B < g, then 0 < Ay < Xy implies o, > =z}, x} # z3,, and
lim |[z3]l =0, fim |23 = +oo.

A——+o0 A—0+

Lemma 1. ([6])Suppose (Hy) hold and e € L*[0,1], then linear boundary value
problem

u’(t) +e(t) =0, te(0,1),
{ u(0) =0, u(1) = au(n), (2.2)

have a unique solution

u(t) = /1 G(t, s)e(s)ds, (2.3)
0
where G(t,s) : [0,1] x [0,1] — R* is defined by

s(l—t)+as(t—n), 0<s<minft,n} <1,
1 t{l-s—an+as), 0<t<s<py<l,
G(t’s)_l—om s(1—t)+an(t—s), 0<n<s<t<l, (2-4)
t(1—s), 0 < max{t,n} <s<1.

Lemma 2. Suppose (Hy) hold, then

0 < cG(s,8)t(l +an—1t) <G(tL,s) < 1 1

i +an—0), ts€(0,1], (25)

where
L fll-an—(1-a)ss 0<s<n<l,
G(37S)‘"1—an{3(1—8),0<77§3§1’

_ . 1 1—
c= mm{—Han, ‘_n_n(kom)’ ant.
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Proof. First we show G(t,s) > ¢G(s, s)t(1+an—t), t,s € [0,1]. There are four
case as follows.

Case 1. 0 < s <min{t,n} <1, when 1 < a < %,
G(t,s)_l—an+(a—1)t>1—-an+( —1)s
G(s,8) l1—anp+(a=1Ds " 1-—an+(a—1)s

when 0 < a < 1,

=12>t(1+an—1),

G(t, s) _ 1-an+ (a—1)
G(s,9)(1+an—t) — [l-an+(a-1)s|(1+an—1)
1 1-an+(a—1)
1-an 1+an-—t
Letk(t)—%t—lﬁ Sok’():%,when?—%§a<%, k@) >

0, k(0) = ng, when 0 < a < 2 — %, E(t) <0, k(1) = 1—;” Thus, for any

5>O£>0

)

1-
l1+an’ (1- )
Case 2. 0<t<s<n<1,

G, 5) =Ly t(1+ an—t) = G(t,s) > t(l + an—t)G(s, s).
G(s,8) s~ = ’
Case 8. 0<np<s<t<],

G(t, s) s(1—t)+an(t—s) (an—s)t+(1—an)s

G(s, )t - s(1 —s)t = s(1—s)t

G(t, s) > min{

(1 + an —t)G(s, s).

s0, G(t, s) = anG(s, s)t(1 + an — t).
Case 4. 0 <max{t,n} <s<1,

G(t t
(t5) _ - >t(l+an—1t) = G(t,s) > t(1 + an—t)G(s, s).
G(s,s) s
Letc = mln{m, n—(—}{%, an}, thus for any s, ¢ € [0, 1}, G(¢, s) > cG(s, s)t(1+
an —t).
Next we show G(t,s) < ;=5-t(1 + an —t), t,s € [0,1]. There are four case
as follows.
Case 1. 0< s Smin{t n} <1,
G(t s) lt(1—5) = (n—s)at — (t — 5)(1 — an)]

[t(l 's)— (t = )(1 — an)
St +on—1t) — (1= t)(t — s) — ans]
(1 +oan—t).

S
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Case 2. 0<t<s<n<l,

Glt,s) = 11~ ) —at(n— )] < < ! H(1+an 1)

1—an -«
Case 3. 0 <n<s<t<,

G(t,s) = 1= [t(1 = 5) = (1 — an)(t - 9)]

l—an
= 2t an — ) — (L—t)(t — 5) — ans]
S 1,10”715(1 + a'f] - t)

Case 4. 0 < max{t,n} <s <1,

Glt,s) = ljant(l—s)g 1 !

t(1+an—1t).
n

In a word, for any ¢, s € [0, 1],

1
0 <cG(s,8)t(l +an—t) <G(t,s) < - Omt(l +an—t).

The proof is completed. a

3. Existence and uniqueness of positive solution

Let P = {z € E| z(t) > 0, t € [0,1]}. Obviously, P is a normal cone of
Banach space E.

Theorem 3. Suppose that there exists v € (0,1) such that
g(tz) > t7g(z), (3.1)
1
h(zz) = t7h(z), (3:2)
forany t € (0,1), z >0, and ¢ € C((0,1), (0, +00)) satisfies
1
/ sl +an—s) 7q(s)ds < . (3.3)
0

Then (1.1) has a unique positive solution x}(t). And moreover, 0 < A1 <
Ay < 1 implies =3 < =z}, a3, # 2%, Ifv € (0,3), then AE{{IQQ”Q:"/{H =

+00, /\Ii%lJr [lz3]] = 0.
Proof. Since (3.2) holds, letting %a: =y, one has
h(y) > ('h(ty) = hity) < =h(y), 1€ (0,1), y > 0. (3.4)
Let y = 1, the above inequality is
h(t) < ti,yh(l), te(0,1). (3.5)
From (3.2), (3.4) and (3.5), one has

h(%x) > {Th(z) = h(%) > £7h(1),
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hitz) < %h(x) = h{t) < %h(l),t € (0,1), o> 0. (3.6)

Similarly, from (3.1), one has
g(tx) > tg(x) = g(t) > t7g(1), t € (0,1), = > 0. (3.7)

Letting t = %, z > 1, one has
g(z) <zVg(1), z > 1. (3.8)

Let e(t) = t(1 + an —t), and we define
Q.= {z € E| %t(l +an—t) < z(t) < Mt(1+an—1), t € [0,1]},
where M > 1 is chosen such that
M > max{(l_lan fol Aq(s)[g(1) +s77"(1 + an — s)‘”h(l)]ds)ﬁ,
(Jo eXG(s,)a(s)[s7 (1 + an = 5)7g(1) + h(1)]ds) "7 }.
For any z,y € Q., we define

Ax(z, y)(t) = )\/0 G(t, 5)q(s)lg(z(s)) + h(y(s))lds, ¢ €[0,1]. (3-9)

First we show that Ay : Q. X Q. — Q.. Letting z,y € Q., from (3.7), (3.8)
and (Hz), one has
9(x(t)) < g(Mt(1 +an—1)) < g(M) < M7g(1), t € (0,1),
and from (3.6) and (Hz), we have
1 1
— _ — TR —
hy®)) < h(g;t+an—1) <77 (1+an—1)""h(57)
< M1+ an—t)"7h(1), ¢t €(0,1).

Then from Lemma 2 and (3.3), we have

Ax(z,9)(t) = X f, G(t, )a(s)[g(z(5)) + h(y(s))]ds
<t +an— )M 1_10”7 fol Aq(s)[g(1) + s77(1 + an — s)""h(1)lds
< Mt(1+an—t), t€[0,1].

On the other hand, for any z,y € Q., from (3.6) and (3.7), we have

9a(t) > 95741+ am = 1)) 2 011+ o~ 1)Tg(=) = 11+ am— 1) r=g(1)

and h(y(t)) =2 hM(Mt(1+an —t)) > h(M) > gzh(1), t € (0,1).
Thus, from Lemma 2, we have
Ax(@,9)(8) = A fy G(t, 8)a(s)g(x(s)) + h(y(s))]ds
> (1 +an— )3k [ eAG(s, 5)q(s)[s7 (1 + an — s)7g(1) + h(1)]ds
> Lt(l+an—t), teo,1].
So, A is well defined and Ax(Q. X Q) C Q-.
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Next, for any p € (O 1) one has

Ax(pa, 29)(8) = X fy G(t, )a(s)[g(ua(s)) + h(Ly(s)))ds
> )‘fo Q(S)[ ( € )) +/ﬂh(y(8))]d8
= lﬂA/\(fE y)( ), t€[0,1].

So the conditions of Theorem 1 and (2.1) holds. Therefore there exists a unique
z} € Q. such that Ay(z*,z*) = z}. It is easy to check that z} is a unique
positive solution of (1.1) for given A > 0. Moreover, Theorem 2 means that if
0 < A1 < g, then 23 (t) < @} (t), z},(t) # 23,(t), and if ¥ € (0,3), then

lim |z3}|| = +o0, lim [|z}]| = 0. This completes the proof. O
Ao+ A—0t

4. Example
In this section, we give some explicit example to illustrate our main results.
Example. Consider three-point boundary value problem
{ u”+)\(u’%+u%)20, 0<t<1, A>0,
u(0) =0, u(l)=3u(l)=0,
where a =3, = i, ft,u) =u"% +ur.

(4.1)

Conclusion. The boundary value problem (4.1) has a unique positive solution.
In addition, 0 < A1 < Aa < 1 implies T3, < Iy, TN, F T3, and

li il = li i =0.
Jlim[lall = oo, lim [[23]
Proof. We apply Theorem 3, then clearly (H;) and (Hz) holds. Let v = %, then

. 1
> tig(z), h(t

l\)l»—A

\./
I
o
le
w|._.

g(tz) = t7z > tih(z), t € (0,1), z >0,

and
Vo .
/s‘Z(——s)‘st<oo.
0 4

Therefore, by Theorem 3, we can obtain the boundary value problem (4.1) has a
unique positive solution. In addition, 0 < A\; < X2 < 1 implies z3 < z3,, x}, #

z3,0 and lim_[Jz3] = +oo, lim ||| =0. 7
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