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REMARKS ON CONFORMAL TRANSFORMATION ON
RIEMANNIAN MANIFOLDS

BYUNG HAK KIM, JIN HYUK CHOI* AND YOUNG OK LEE

ABSTRACT. The special conformally flatness is a generalization of a sub-
projective space. B. Y. Chen and K. Yano ([4]) showed that every canal
hypersurface of a Euclidean space is a special conformally flat space. In
this paper, we study the conditions for the base space B is special confor-
mally flat in the conharmonically flat warped product space B™ x ¢ R
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1. Introduction

The conformal transformation on the Riemannian manifold does not change
the angle between two vectors at a point and characterized by a change of
a Riemannian metric. Conformal flatness is equivalent to C = 0 for m > 3
and D = 0 for m = 3 in the m-dimensional Riemannian manifold(see §2 for
definitions of C' and D).

On the other hand, conharmonic transformation is a conformal transfor-
mation preserving the harmonicity of a certain function. The conharmonic
curvature tensor is invariant under the conharmonic transformation and con-
harmonically flat is equivalent to conformally flat and scalar curvature vanishes.

In [4], B. Y. Chen and K. Yano introduced the notion of special conformally
flat spaces which generalizes that of subprojective space. Also they showed that
every conformally flat hypersurface of a Euclidean space (hence of a conformally
flat space) is special, and every canal hypersurface of a Euclidean space is a
special conformally flat space.
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In this point of a view, we shall study the conharmonically flat warped prod-
uct space M = B™ x; R! of the n-dimensional Riemannian manifold(B, g) and
R'. We shall investigate the condition for B is special conformally flat, and
study the geometric characterization of M and B.

Also we can construct new special conformally flat spaces by use of the The-
orems 3 and 9.

2. A conformal transformation and a conformal curvature tensor

A conformal transformation between two Riemannian manifolds (M, g) and
(M', ¢’} is a diffeomorphism preserving angle measured by the metrics g and ¢'.
It is characterized by

g =e*yg (2.1)
where p is a scalar function. In this case g and ¢’ are said to be conformally
equivalent. If the function p is constant, then the conformal transformation
is said to be homothetic. The Weyl conformal curvature tensor C in an m-
dimensional Riemannian manifold M is defined by

C(X,Y)Z = R(X,Y)Z - ——{S(¥, )X ~ g(X, 2)QY +g(¥, 2)@QX

~S(X, Z)Y} + Km m— {g(Y, 2)X — g(X, Z)Y}, (2.2)

(m = 1)(

where R, S and K are curvature tensor, Ricci curvature tensor and scalar curva-
ture of M respectively and g(QX,Y) = S(X,Y). The Weyl conformal curvature
3-tensor D is defined by

D(X,Y)Z = VxS(Y,Z) - VyS(X, Z)
5T {9 2K — a(X. )Y E) (23)
or equivalently,
D(X,Y)Z = VxL(Y, Z) - Vy (X, Z), (2.4)

where we have put

K
L(X,Y)=S(X,Y) 2m = 1)g(X, Y).

It is well known that ([2,3]) M is conformally flat if and only if C = 0
for m > 3, D = 0 for m = 3. In general, the harmonicity of functions is
not preserved by the conformal transformation. Related this fact, Y. Ishi ([5])
introduced the conharmonic transformation, which is defined by a conformal
transformation preserving the harmonicity of a certain function. It is easily
seen that conformally flat manifold is conharmonically flat if and only if the
scalar curvature vanishes.
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3. Special conformally flat space

Let (B, g) be a n-dimensional Riemannian manifold with Riemannian metric
g and let M = B™ x; R' be a warped product Riemannian manifold where
/: B — R' a warping function and this metric tensor

~ Gab 0
(gij) = < 8 f2 ) ) (31)
where the range of indices a,b,¢,d,--- is {2,3,---n+1}.

Then the Christoffel symbols { h } of M are given by ([6,7])
B a
B be
a a
{ 11 } = f

fa

8- ()

and the others are zero, where f, = V,f, f* = fvg®* and the range of indices
hyi, g k,--- is {1,2,--- ,n,n+ 1}. Let R, R and R be the curvature tensor of
M, B and R! respectively. Then we have

Rdcb ¢ = Rdcb @
. 1 (3.3)
Rap ! = ?vdfb

and the others are zero.

Hence the Ricci curvature tensors S, S and S for M, B and R' respectively are
given by

Scb = Scb - %(vcfb) y
S, = 0 7 (3.4)
Su = —f(&))

where Af is the Laplacian of f for g. The scalar curvatures K, K and K for



860 Byung Hak Kim , Jin Hyuk Choi and Young Ok Lee
M, B and R! respectively are related by

~ oA f
K=K-22L
f

If K =0then K = ;Af. If B is compact, then / fKdo = 2/ div(V;f)do =
B B

(3.5)

2 / Afdo =0 by Green’s theorem. Since f is positive on B, we have

B
Lemma 1. Let M = B™ x5 R be a warped product Riemannian manifold
with K = 0. If B is compact and K s constant, then K = 0.

1
Since éAfz = fASf + || fall?, we can see that

/B (FOF + 1 fallPdo =0 (3.6)

on the compact manifold B by the Green’s Theorem. If K = 0 and K is constant
on a compact manifold B, then, by Lemma 1, K = 0. So, by (3.5), Af =0.
Hence the equation (3.6) gives f, = 0, that is, f is a constant function. Thus
we have

Theorem 2. Let M = B™ x5 R! be warped product Riemannian manifold and
K =0 and B is compact. If K is constant, then M is Riemannian product
manifold.

Next, let M = B™ x5 R! be a conharmonically flat warped product space
with K > 0. Then the Riemannian curvature tensor R on M are given by ([1,5])

. 1 /= - I _—
Ryji = — (Sji(sif - Ski(s;L + Sk "G — S; hgki) . (3.7)
Using (3.3), (3.4) and (3.7), we get

1
Ran® = —— (903 — Sasd2 + Sa *9er — 52 “9us
n-—1 (3 8)
) .
o DF (5§chb —82Vafo + 9eVaf® — gdecfa),
and that
-2 A
S ngcb, (3.9)
K= MTf. (3.10)

Hence it is easily obtained that
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K
chb - L‘ <_gcb - Scb) . (311)
n—2\2
From (3.8) and (3.11), we get
a 1 a a a a
Ry ¢ = —— (Scb5d — Sapbg + Sa “gep — e gdb)
n—2
(3.12)
S S (gcb5§ - gdb5a) )
(n—1)(n-—2) ¢
that is, B is conformally flat if n > 3.
On the other hand, L on B is defined by
Scb
Loy = — . 3.13
* = T 2 a2 (3:13)
and, using (3.9) and (3.11), L is reduced to
geb 1
Lipy=—-——""—"—<K+— . 3.14
cb 2(71 — 1) + fvcfb ( )

If there exist, on a conformally flat space B, two functions « and 3 such that
« is positive and
2

«
Ly = _?gcb + Bacop (315)

then B is called a special conformally flat space[4], where we have put o, = 0.a.

If we put
K A(n— 1)K
=/ ARG s 3.16
a=\Vozr PT TR, Vel (3.16)

and considering (3.14), then (3.15) is satisfied.
Thus we obtain the following theorem.

Theorem 3. Let M = B" x; R' be a conharmonically flat warped product space
withn > 3. If K > 0, then B is special conformally flat space.

Since a Riemannian manifold has the harmonic curvature if and only if the
scalar curvature is constant and D = 0 ([8]), we can state

Propositon 4. Let M = B® x; R! be a conharmonically flat warped product
space. If B has the harmonic curvature and K > 0, then B is special confor-
mally flat space.

If f is concircular, then we get

fK
\v4 f [ Stel 3.17
cJb m Geb ( )
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from (3.10)and (3.11). So (3.9) and (3.12) induce

Sep = Egcs;. (3.18)
n
If we substitute (3.18) into (3.12), we can see that
Ryep “ = ‘_{(—'(chég ~ gav0z )- (3.19)
n(n — 1) ¢

Conversely, if B is a space of constant curvature, then the equations (3.12) and
(3.19) imply
Vefo = Agen,

that is, f is concircular. Hence we have

Lemma 5. Let M = B™ x; R' be a conharmonically flat warped product space
with m > 2. Then B is a space of constant curvature if and only if f is concir-
cular.

If n = 2, then we have

and that

Hence Sq, = } Jeb, that is, B is Einstein if K is constant. Since 2-dimensional
Einstein space i3 a space of constant curvature, we have

Propositon 6. Let M = B? x; R! be a conharmonically flat warped product
space. If K is constant, then B is a space of constant curvature.

If B is compact and K is constant, then the conharmonically flat warped
product space M = B™ x; R! is Riemannian products by Theorem 2, that is f
is a constant function. Hence R = 0 by (3.8) and that M is locally Euclidean.
Thus we have

Theorem 7. Let M = B" x; R! be a conharmonically flat warped product
space. If K is constant and B is compact, then M is locally Fuclidean.

The fact that K =0 on a conharmonically flat space and Lemma 1 give the
following proposition.

Proposition 8. Let M = B™ x; R! be a conharmonically flat warped product
space withn > 1. If B is a compact and K is constant, then K = 0.
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By Lemma 5, if B is a space of constant curvature in the conharmonically
flat warped product space M = B™ x5 R! (n > 2), then f is concircular. From
this fact, (3.10) and (3.14) give

1 K 2Af
Lgp=—= - 3.20
b 2 (n -1 nf ) Jeb ( )
and
K __24f -_K . (3.21)
n—1 nf nn-1)
Since K > 0, if we put
o= K (3.22)
n—1
2
then L., = —%gcb. Since B is conformally flat from (3.12), B is a special

conformally flat space. Conversely, if B is a special conformally flat space with
8 = 0, then B is conformally flat and f is concircular by use of (3.14) and
(3.15). So,by Lemma 5, B is a space of constant curvature. Thus we have

Theorem 9. Let M = B" x; R' be a conharmonically flat warped product space
with n > 3 and K > 0. Then B is a special conformally flat space with 8 =0
if and only if B is a space of constant curvature.

By Proposition 4 and equations (3.20)-(3.22), we see that

Propositon 10. Let M = B3 x ¢ R! be a conharmonically flat warped product
space and let B has the harmonic curvature and K > 0. Then B is a spe-

cial conformally flat space with 8 = 0 if and only if B is a space of constant
curvature.
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