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PULSE VACCINATION STRATEGIES IN A INFECTIOUS
DISEASE MODEL WITH A NONMONOTONE INCIDENCE
RATE AND TWO DELAYS
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ABSTRACT. This paper deals with a delayed SEIRS epidemic model with
pulse vaccination and crowded incidencerate. Moreover, the case of vertical
and horizontal transmission is considered. By using the discrete dynam-
ical system determined by the stroboscopic map, the exact infection-free
periodic solution of the SEIRS model is obtained. Further, by employing
the comparison arguments, we prove that under the condition that R« < 1
the infection-free periodic solution is globally attractive, and that under
the condition that R* > 1 the disease is uniformly persistent, which means
that after some period of time the disease will become endemic.
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1. Introduction

In developing countries, infectious diseases have continued to be the major
causes of suffering and mortality. Moreover, epidemic disease agents adapt and
evolve, then new epidemic diseases have emerged and some existing diseases have
reemerged (see, for example, Levins et al.[1]). Newly identified diseases include
Lyme disease (1975), Legionnaires disease (1976), toxic-shock syndrome (1978),
hepatitis C (1989), hepatitis E (1990), hantavirus (1993), severe acute respira-
tory syndrome(2004). The human immunodeficiency virus (HIV), which is the
etiological agent for acquired immunodeficiency syndrome (AIDS), emerged in
1981 and has become an important sexually transmitted disease throughout the
world.

Recently, many monographs have given us exciting insights of the emer-
gence and detection of new diseases (see, for example, Preston[2]; Oldstone[3];
Garrett[4]). Mathematical models have become important tools in analyzing the
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spread and control of epidemic diseases (see, for example, Hethcote[5]) to avoid
an economic loss.

Beginning in 1926 Kermack and McKendrick published papers about epidemic
models and obtained the epidemic threshold result that the density of suscep-
tibles must exceed a critical value in order for an epidemic outbreak to occur.
Mathematical epidemiology has grown rapidly starting in the middle of the 20th
century, so that a tremendous variety of models have now been formulated,
mathematically analyzed, and applied to infectious diseases(see, for example, V.
Capasso and G. Serio[6]; Anderson and May(7]; Busenberg et al.[8],[9]; Castillo-
Chavez et al.[10]; Esteva and Vargas[11]; Feng et al.[12]; Hyman and Li[13] ,[21];
Chen et al.[14],[15],[20]; Shulgin[16]; Hethcoto[19]; Li et al.[23] and the references
cited therein).

In classic epidemic dynamics, we usually divided total population into follow-
ing groups:

e Susceptible (class 8): Can contract the disease;
e Infected (class I): Has the disease and can infect others;
¢ Removed {class R) : Former infectives who are no longer infectious.
A SIRS model which has birth rate and death rate can be written as
$(ty = —IH(I,8) — dS + vR+ B,
I(t) = TH(I, 8) ~ (d+ 7)1, )
R(t) =~I — (d+ v)R.
Here d is common natural death rate of three groups S, I end R; B denotes the
recruitment rate of the population; -y is the rate of removal at which the infective
individuals go into the removed class; v is the probability of which individuals in
the removed class loss their immunity and go into the susceptible class; IH(I, S)
is the linear or nonlinear incidence rate concerning S and I.

The development of vaccines against infectious diseases has been a boon to
human being. Pulse vaccination strategies in contrast to continuous vaccina-
tion are cost effective as they help in disease eradication at relatively low values
of vaccination. Pulse vaccination strategy (PVS), whose theoretical study was
started by Z.Agur and joint authors(see, for example, Agur[33]), consists of
periodical repetitions of impulsive vaccinations in a population with multi age-
cohort. Every vaccination time a constant fraction m of susceptible people (see,
for example, Sabin(34]) is vaccinated and it was shown theoretically that pulse
vaccination in which child aged one to seven years are immunized once every five
years, may be enough to prevent the epidemics. PVS allows to reach the eradi-
cation of a disease with some practical advantages, as discussed in Shulgin[16};
Sabin et al.[34]; DeQuadors et al.[35]; Ransay et al.[36]; Gao et al.[37]. Examples
of good successful applications of this policy include the global eradication of
smallpox was announced by the WHA in May 1980 and the vaccination campaign
against measles in UK in 1994(see, for example, Ramsay([36]). In 1995, Nokes
and Swinton [38] have pointed out that pulse vaccination is gaining prominence
as a strategy for the elimination of childhood viral infections such as measles



Pulse vaccination strategies in a infectious disease model 781

and polio.

On the other hand, it is well known that in an epidemiological model the wait-
ing times in the compartments must be specified. Possible compartments are
the susceptible compartment S, the latent compartment F (in which individuals
are infected, but not yet infectious), the infectious compartment I, and recovered
compartment R (in which individuals have permanent or temporary immunity).
Here it is assumed that the latent period and, respectively, infectious period are
constants for all individuals.

In recent years, many authors have studied epidemiological models with non-
linear incidence rates. The most common non-linear incidence rate takes the
form BIPS(3,p,q > 0), especially 8IS(p = 1,4 = 1) is known as the bilinear
incidence rate. Epidemiological models with this kind of incidence rate have
been studied by Liu et al. [24, 25] and later by Hethcote et al. [17], Hethcote
and Van den Driessche [18], Derrick and Van den Driessche [26, 27] and many
others. After studying the cholera epidemic spread in Bari in 1973, Capasso
and Serio [6] introduced a saturated incidence rate g(I)S into epidemic models,
where g(I) tends to a saturation level when 1 gets large, i.e.,

kIS

9(1) = 1+al’

in which kI measures the infect force of the disease and 5 +1a 7 measures the inhi-
bition effect from the crowding effect of the infective individuals. This incidence
rate seems more reasonable than the bilinear incidence rate because it includes
the crowding effect of the infective individuals and prevents the unboundedness
of the contact rate by choosing suitable parameters. In 2003, Ruan and Wang
[28] have studied the epidemic model with the incidence rate of the form

kI%S
14 al?

Obviously, these incidence rates are special cases of the following incidence rate
which is given by

kI'S
1+ alh
which is proposed by Liu et al.[24]. Also, Xiao and Ruan [31] proposed a non-

monotone incidence rate
kIS

1+ al?
which model the phenomenon that when the SARS emerges, people has little
knowledge about the disease such that the infection probability are increasing.
However, at the late stage of the SARS outbreak, psychological effects on the
general public (see Leung et al. {30]), aggressive measures and policies, such as
border screening, mask wearing, quarantine, isolation, etc. have been proved to
be very effective (Gumel et al. [29]) in reducing the infective rate , even when
the number of infective individuals were getting relatively larger. Similarly, for
susceptible individuals their psychological effects also play an important role in
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reducing the infective rate. For example, due to be afraid of catching a disease,
many susceptible individuals would like to stay at home rather than in public
places. Hence, the probabilities of effective contacts between susceptible individ-
uals and infective individuals are reduced even when the number of susceptible
individuals was getting relatively larger. To model this phenomenon, we propose
a incidence rate of the complete form

BSI

JED=r = e

So far as we know, people are seldom study ordinary differential equations con-
cerning mathematical epidemiology models with this type incidence rate because
qualitative analysis in these kind of differential systems is very cormplex. Also,
it is noted that the newborns of the infectious may already be infected with the
disease at birth such as hepatitis, phthisis, etc. This is called vertical transmis-
sion. On the other hand, some diseases may be spread from one individual to
another via horizontal contacting transmission. Some epidemic models with ver-
tical transmission were studied by many authors. However, few literatures deal
with the analysis of disease with the crowded incidence rate, pulse vaccination,
vertical and horizontal transmission.

In this work, motivated by the above-mentioned surveys, we consider the im-
pact of pulse vaccination, latent period, infectious period, a crowded form for
the incidence rate, vertical and horizontal transmission. The novel aspect of
our paper is that we analyze the spread of epidemic diseases which are mainly
influenced by the effects of psychological factor of susceptible individuals, and
are connected with the latent period, infectious period, vertical and horizontal
transmission. Also, using suitable mathematical tools, we focus on the control
of epidemic diseases via pulse vaccination. The organization of this paper is
as follows. We, in Section 2, formulate our model. To prove our main results,
in Section 3, we give some preliminary results. In Section 4, main results and
proofs of main results are given. Finally, in Section 5, we give out the conclusion
of this paper and also point out some future research directions.

(8,a,b > 0).

2. Model formulation

Since the natural birth rate and death rate are the same (denoted by p below)
and the disease is assumed not to inflict death on the infected host, so following
the classical assumptions, we divide a population of constant size N = 1 into a
number of classes of epidemiological significance. For the SEIRS model, these
classes are the susceptibles, the exposed populations(those who are already in-
fected but are not yet infectious), the infectives and recovered (or removed) with
populations denoted, respectively, by S, E, I and R, such that S+ FE+I+R = 1.

The delayed SEIRS epidemic model with pulse vaccination and crowded in-
cidence rate is constructed as follows

{ S(t) = (1 — S(t)) = F(S®), I(t)) +vR(t) — (1 — p)ud, }
E(t) = f(S(t),I(t)) — e, f(S(t — w), I(t —w)) — pE,
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Ity = et f(S(t —w), [(t —w)) —e WHNEf(S(t —w—T),

o It —w—1))—pul, t £ nT
R(t) = e @I f(S(t —w — 1), I(t —w — 7)) — YR(t) ’
S(tF) = (1-0)S(), (2)
E() = E(t), -

I(t*) = 1(t), ’
([ R(t") = R(t) + 65(),

in which

o S, E, I, R, f(S,I) and p are as in above. Also,n ¢ Z, = {0,1,2---}.

e @ is the proportion of those vaccinated successfully(with 0 < 8 < 1).

e The delay w is the latent period of the disease, and another delay 7 is the
length of the infection period. The term e~ “*7H f(S(t — w — 7), I{t —
w — 7)) reflects the fact that an individual has recovered from infection
and still are alive after infection period 7. The coefficient v is the loss
of immunity rate.

e T is the time between two consecutive pulse vaccinations. Without sig-
nificant modification to the successive analysis, T' could be also a rational
or also irrational number.

e The term pu(0 < p < 1) represents the number of newborns of infectious
who transfer to the susceptible class, and (1 — p)u denotes the number
of newborns of infectious who are infected vertically.

Obviously, we can get the following system which is equivalent to system (2)

([ S(t) = (lz;r 7)()1 ; S(t)) — f(S(), 1(1)) —~(U(t) + E(t))
- — D)L,
E(t) = f(SQ), I(t)) —e ™" f(S(t —w),I(t —w)) — uE t#nT,
I(t) = e “rf(S(t —w), It —w)) —e WHDHf(S(t —w —T),
I(t —w — 7)) — pul, (3)
S(tt) = (1-0)S(),
E(tt) = E(t), t =nT.
I(th) = I(t),

Considering ecological significance, we always assume that the initial value
O(t) = (g1, P2, P3) for system (3) satisfies

(¢17 ¢27 ¢3) S C([_(w + T)7 0]7 Ri—)? ¢’L(O) > O(Z = ]-7 27 3)7
where R} = {(S, E,I)|S > 0,E > 0,1 > 0}. The meaningful domain of system
(3) is
Q={(S,E,])eRY0<S,E,I<1, S+E+I<1},
and it is easy to prove that 2 is a positive invariant set.
In this paper, we shall study the dynamics of the “disease-free” state for

system (3). Also, persistence (or permanence) is an important property of dy-
namical systems and of the systems in ecology, epidemics, etc. On the one hand
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it is an important concept in itself addressing the long-term survival of some or
all components of a system (see, for example, Hutson, Schmitt [42]; Waltman
[43]), for reviews and references of the development until the early nineties, and
Zhao [44] for an update. Hence, our another central focus is on the persistence
of system (3) implies that the disease will be endemic.

3. Preliminaries

In this section, we shall introduce some definitions and state some preliminary
lemmas which will be useful for establishing our main results.

Lemma 1. Consider the following impulsive system

y'(t) = a — by(t), t # nT, @)
y(tt) = (1= Ny(t), t=nT,

in which a, b> 0, 0 < A < 1. Then system ({) has a unique T-periodic solution
given by
a /\e-—b(t—nT)
W) =(1-
y () b( 1—(1— Ne-bT
which is globally asymptotically stable.

), t € (nT, (n+ 1)T],

Proof. Integrating and solving the first equation of system (4) between pulses,
we deduce

u(t) =5 — (G T )™=, t & (nT, (n+ 17T,

where y(nT") be the initial value at time nT. Using the second equation of
system (4), we deduce the stroboscopic map such that

y((n+1T*) = (1= (F = (7 —yTNT) = fy(nT),  (5)
b b

where f(y) = (1 - )\)(9 — (% - y)e‘bT). It easy to see that (5) has a unique

g } ?1 1)\)6_” that satisfies y < fly) <70 <y < F;

¥ < fly) < yify > 7. Hence, we are easy to note that 7 is globally asymptotically
stable. It implies that the corresponding periodic solution of system (4)

positive equilibrium 7 =

a Ae—b(t—nT)
() = = —

v =31 1= (1= NeT

which is globally asymptotically stable. This completes the proof. O

), t € (nT, (n+1)T],

Lemma 2. [32] If m : [tg, 00) — [0, 00) is continuous such that

m(t) = —pm(t) + o] sup m(s)] for t > to and 19 > 0,

t—T()SSSt
and if p > o > 0, then there exist positive numbers 1 and k such that

m(t) < e™™ for t > to.
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Lemma 3. Consider the following differential inequality
U(t) > ()b —av(t),
where @, b> 0, 5(th) > 0. One has

502 (D20 + (B Dexp(-ale — )} for ¢ 15

Uniform persistence (or permanence) is an important property of dynamical
systems and of the ecosystems. It is actually a concept which is important in
itself, addressing the long-term survival of some or all components of a system.

Definition 1. System (3) is said to be uniformly persistent if there is a constant
m > 0(independent of initial value) and a finite time Tj such that for all solutions
(S(t), E(t), I(t)) with all initial values S(0F) > 0, E(0") > 0, I(0%) > 0,
S(t) > M, E(t) > M, I(t) > M hold for all t > T. Here Ty may depend on the
initial values S(07), E(0") and I(0%).

Definition 2. System (3) is said to be permanent if system (3) is uniformly
persistent and there is a constant M > O{independent of initial value) and a
finite time Ty such that for all solutions (S(t), E(t), I(t)) with all initial values
S(0*) >0, E(0*) >0, I(07) >0, S(t) < M, E(t) < M, I(t) < M hold for all
t > Tp. Here Ty may depend on the initial values S(0%), E(0") and I(0™).

4. Main results and proofs
4.1 Main results Our main results are the following:
Theorem 1. If R, < 1, then infection-free periodic solution (S*(t),0,0) of
system (3) is globally attractive, where

ge— (utNT
Ro=— (- c ).
pewr 1—(1—0)e T

Theorem 2. System (3) is permanent provided

. Bemwr(1 — e ™H) ( ge—(u+NT ) o1

Tl ratb)pty) VU 1 (1— e @7

holds.

Corollary 1. If 3 < pe“*, then the periodic infection-free solution (S*(t),0,0)
of system (3) is globally attractive.

Corollary 2. If 3 > pe“", then the periodic infection-free solution (S*(t),0,0)
of system (3) is globally attractive provided that
(1 — p
DY R Y e Ul )
wty B — per

holds or
L 1)(e(u+v)T - 1)
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holds.

Corollary 3. If wf > pe*®, then the disease is permanent provided that
1 In wf — (1 — Q)per

T>T =
gty wf — pek

holds or
- ___cc,é _ (p4+T _
g < 6* ( Ry 1)((3 Hety 1)

holds, in which w = (1 — e"“)m <1.

4.2 Proof of Theorem 1

We first determine the existence of the infection-free solution of system (3), in
which infectious individuals are entirely absent from the population permanently,
i.e. I(t) = 0fort > 0. Under this condition, the growth of susceptible individuals
and exposed individuals satisfy the following impulsive system without delays

$(t) = (u+ )1 - 5(0) ~E(), } ¢ 4aT

E(t) = ~pE,
S(tt) = (1 — 8)8(t), _
E(tY) = E(%), 5 } t=nT,

Obviously, it follows from the second and fourth equations of the above system
that limy oo E(t) = 0. Hence we have the following limit system

{Sup4u+w0—ﬂﬂxt¢ﬂﬂ (6)
S(tt) = (1-6)S(¢), t=nT.

By Lemma 1, it is easy to know that system (6) has a unique T-periodic solution
given by

fe— () (t—nT)
1—(1—@)e~wtnT’
which is globally asymptotically stable.
Since R, < 1, we can choose a € > 0 sufficiently small such that

S*(t)=1- t € (nT,(n+1)T],

o 1= e tMT
T e T T @)

From the first equation of system (3), we get § < (u+7)(1 — S). We consider
the comparison equation

&(t) = (p+7)1 —=(@), t#nT,
z(nT*) = (1 -8)z(nT), t=nT.
It follows from Lemma 1 that the above system has a unique globally asymptot-
ically stable T'—periodic solution
g;*(t) P S* (t) ey 1 e W@'(N*”Y)(t"nT:‘
for t € (nT,(n+ 1)T).
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According to the impulsive comparison theorem (see, for example, Bainov et al.
[40],[41]), for the given €, there exists a n1 € Z such that

1—e~tMT el

S(t)<$*(t)+€:S*(t)+ESW+€:S

(®)
forte (nT,(n+ 1)T], n > n;.

From the third equation of system (3), we get
I(t) < e=*HB8I(t — w) — pl(t) for t >nT +w, n>ny,

then by Lemma 2 and the comparison theorem, it follows that lim;_, I(¢) =0,
i.e. for any sufficiently small e; > 0, there exists an integer ng > ny such that
I(t) < € for all ¢ > noT. Further, we are easy to get limi_o E(t) = 0, i.e.
for any sufficiently small e > 0, there exists an integer nz > no such that
E(t) < €3 for all t > ngT. From the first equation of system (3), we obtain
S>Wu+v1 - —€)) — (p+v+ Be1)S. Consider the following impulsive
auxiliary system

{ Z(t) = (“ + 7(1 — € - 62)) - (/j’ +7+ ﬂel)z(t)v t 7é nT, (9)
2(t7) = (1 - 6)2(¢), t=nT,

in which n > n3. Then by Lemma 1 system (9) has a unique T-periodic solution
given by

"y W+ 'y(l —€ — 62) Ge—(p+v+Per)(t—nT)
() = w4y + Ber ( 1= (1= §)e(wiytBe)T

which is globally asymptotically stable. It follows from the impulsive comparison
theorem that

), t € (nT,(n+ 1)T],

S(t) > 2*(t) — € for t > nsT.
Hence
2°(t) —e < S(t) < S*(t) + € for t > ns3T.
Let €1,e3 — 0, we get 2*(t) — S*(t). Since ¢ is sufficiently small, the periodic
infection-free solution (5*(t),0, 0) of system (3) is globally attractive.
4.3 Proof of Theorem 2

Let (S(¢), E(t), I(t)) be any solution with initial values of system (3). Hence,
it is obvious that S(t) <1, E(t) < 1and I(¢) < 1for all¢ > 0, we shall determine
that there exist positive constants mg, mg, mr and to (to is sufficiently large)
such that S(t) > mg, E(t) > mg and I(t) > my for all t > to.

Firstly, from the first equation of system (3), we derive

S>pp—(u+v+p)S,
then considering the following impulsive auxiliary system

{ o(t) = pp— (u+v+ B(t), t#nT, (10)
v(tt) = (1 - O)w(t), t=nT.
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By Lemma 1 system (10) has a unique T-periodic solution given by

jJn 6(3"(/“*"?‘1’[3)(’5“"7’)
* t possccan —-‘—-—-———( e

YO T T Toa e e

which is globally asymptotically stable. We note from the impulsive comparison

theorem and the global asymptotical stability of v*(¢) that for any sufficiently
small € > 0, there exists a tg > 0 such that

), te (nT,(n+1)T],

ge—(p+r+8)T
S(t) > Pe (1 - °
pty+BY 11— (1= e HrHAT
Secondly, for the above ty, we are ready to show that there exists a mr > 0

such that I{t) > my for t > to. Since R* > 1, we can choose sufficiently small
mj, € > 0 such that

)—sims for t > to.

WY o o T e
Pl — e S — pp > 0, (11)

p=(y+ Q1= p)p)ym; >0 and

l+a+b
where
S_ _pu- ) Pe—(utr+pm )T ,
gty + Bm) ( 1-(1- a)e-wﬁﬂmm) me

It is claimed that for any #o > 0, it is impossible that I(t) < m/ for all t > to.
Otherwise, there exists a to > 0 such that I(t) < m/ for all £ > £5. According to
the first equation of system (3), we derive

8> (p— (v + (1 —p)wm]) — (u+7 + fm))S,
then considering the following impulsive auxiliary system

{ o(t) = (u~ (v+ (1L - p)p)m]) — (u+ 7 + Bm))o(t), t# T,
B(tT) = (1 - 8)5(t), t=nT. o)

It follows from Lemma 1 that system (12) has a unique T-periodic solution given

by

R _ 1 f —(py+Bm] ) (t—nT)

(1) = L= 0 = Dwm; (1_ be enT) T)’ ,
B+ + Bm 1— (1 — @)e~(wtr+Amy)

which is globally asymptotically stable. It is noted that from the impulsive

comparison theorem and the global asymptotical stability of v*(t) that for any

sufficiently small ¢’ > 0, there exists a t;(> to + 7 + w) such that

€ (nT, (n+1)T},

( (1 p) ) ,] € (“ i ﬁ /I) IR
/ ) / - el = 0 >
S(t) > gty + 6711} (1 1- (1 — 9)6‘“(#+’7+[3m'1)’1’) € S fort 2ty
Next, we define a function V(t) which is governed by

4 e

V() = I(t) + (1 — ™) / F(S(O), 1(C))dG — e+ / SO, 1),

—w—
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After a little calculation, the derivative of V (£) along the solution of system (3)
is

V() = R e S, 1) - pud ()
> (TS i) sor b2,

Setting I, = mingeps, ¢, +r40) I(t), we will show that I(t) > Ir for all £ > #;.
Suppose the contrary. Then there is a Ty > 0 such that I (t) > I for all
th<t<t1+74+w +1~“0, and I{t; + 7+ w +f0) = Ir.. It follows from the third
equation of system (2) and (11) that

t1+7+To

rrotB) = [ S )0
t1+1o
Be7(1—e#7)S
> (I+a+byu I > 1,

which leads to a contradiction. Thus, I(t) > I, for all t > ¢;. As a result, we

derive that

Be=wr(1 — e"™)S
1+a+10

Hence V(t) — oo as t — oo, which is contrary to V(t) < 1 +wfBe™“#(1 — e~ ™).

Upon that, we accomplish that there exists a t; > 0 such that I(t;) > m/.

By the claim, we are left to consider two cases. First, I(t1) > m/ for all t > t;
which indicates that our aim is obtained(here let m; = m/). Second, I(t)

oscillates about m/; for all large . We hope to show that I(t) > mT,’ for all large
t. Let t*(> t1 +w + 7) and n > 0 satisfy

It = It +n)

V(t) > (

— I >0 fort>ts.

and
I(t) <m} for t € (t*,t* +n).

Moreover, according to the ultimate boundedness of the positive solution in
system (3) and I(t) does not undergo the impulsive effect, it is easy to see that
I(t) is uniformly equicontinuous. So there exists a constant 71(0 < T} < w + T,
T is independent of the choice of t*) such that I(¢t) > mTlI for all t € [t*,t*+T1].

In the following we shall discuss three possible cases in term of the size of 71,
nand w+ 7.

Case 1. When n < T1 < w + 7, it is obvious that I(t) > mT,’ for all t €
[t*, t* + 7).

Case 2. When T1 <7 < w + 7, it is clear that

1) = / RS0, 1(E)e 0 de

—w—T
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t"+T
> [ st ene o de
-
/BS mlI —plw+T K /)
Tragpz e o Ti=m (13)

fort € (t* + T1,t* + 1.

Case 8. When T} < w + 7 < 5, we shall consider the following two subcase,
respectively.

Subcase 3.1 If t € [t*,t* +w+7], it is easy to know that from (13), I(t) > mf
for all ¢ € [t*,t* +w + 7].

Subcase 3.2 If t € [t*+w+T,t* +1)], we can affirm that I(t) > m/. Otherwise,
suppose that there is a t € [t* w7, t*47)] such that I(t) > m/ for t € [ t*+w, ],
and I( t ) = m/. From the third equation of system (3) and (11), we obtain

Tw .
16) = [ A1) Os
t—w—r
Be~“H(1 — e‘”‘)?m’l’
(1+a+b)u
which leads to a contradiction. Hence, the affirmation is obtained. Due to the
randomicity of t*, we can conclude that there exists m; = min{%t, m7} > 0
such that I(¢) > my for t > to.
Next recalling the second equation of system (3), from I{t) > my for t > tg > 0,
we are easy to know that there exists a g > 0 such that

E®t) = f(S(t),1(t)) — e “Ff(S(t —w),I(t —w)) — pE
> € — )U/E7 (]‘4)
then it follows from Lemma 3 that there exists a o > to E(t) > 5%5 = mpg for
t > to.

Remark 1. For the following SIRS model

([ 5(t) = u(1 - S(1)) — £(S(t), I(t)) +7R(t) — (1 — p)ul,

10 = £S(0,10) = (STt ~w), 1 -w) A
—PuL,

R(t) = e f(S(t - w), I(t — w)) = YR(t) — pR(D),

SET) = (1-6)8(), }

"
> my,

>

I(t*) = I(t),
\ R(t") = R(t) +05(¢),
Using the similar analysis, we can get threshold parameters of the extinction of

the disease and the uniform persistence of the disease. We omit arguments to
avoid redundancy.

t=nT,

5. Discussion
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In this paper we have proposed and analyzed a delayed epidemic model with

pulse vaccination, vertical and horizontal transmission. The important results

in

the paper is that R, < 1 implies that the periodic infection-free solution is

globally attractive. From the mathematical viewpoint, it is noted that the global

at

tractivity of the infection-free periodic solution is independent of the infection

period 7. It is also noted that the disease will be permanent if R* > 1, in which
R* is dependent on all coefficients in system (3). These seem to be reasonable
from a biological point of view. But it should be noted that for the threshold
parameter between the extinction of the disease and the uniform persistence of
the disease, the dynamical behaviors of system (3) have not been studied. These
issues would be left as our future consideration.
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