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DYNAMICS OF A HIGHER ORDER RATIONAL
DIFFERENCE EQUATION

YANQIN WANG

ABSTRACT. In this paper, we investigate the invariant interval, periodic
character, semicycle and global attractivity of all positive solutions of

. PHayn_—
the equation yp11 = m, n = 0,1,..., where the parameters
p, ¢, r and the initial conditions y_g,... ,y¥—1,yo are positive real num-

bers, k € {1,2,3,... }.It is worth to mention that our results solve the open
problem proposed by Kulenvic and Ladas in their monograph [Dynamics
of Second Order Rational Difference Equations: with Open Problems and
Conjectures, Chapman & Hall/CRC, Boca Raton, 2002]
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1. Introduction and preliminaries

Our aim in this paper is to study the dynamical behavior of the following
difference equation

p+ qYn—k
= n=01,..., 1.1
bt L+ Yn +7Yn—k ( )
where the parameters p, ¢, r and the initial conditions y_x,...,y_1, Yo are pos-

itive real numbers, k € {1,2,3,...}.

The study of properties of rational difference equations has been an area of
intense interest in recent years; see [1-10] and the references therein.

For the sake of convenience, we recall some notations and results which will
be useful in the sequel. Let I be some interval of real numbers and let f be a
continuously differentiable function defined on I x I.Then, for initial conditions
T_k,...,Zo €1, it is easy to see that the difference equation

Tn+1 :f(mna-rn—k)v ,Tl:O,l,... ’ (12)
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has a unique solution {z,}° _,.

A point 7 is called an equilibrium point of (1.2) if T = f(z,z). That is ,
zn, =7, formn >0, is a solution of Eq.(1.2), or equivalently, T is a fixed point
of f.

An interval J C I is called an invariant interval of the difference Eq. (1.2) if

YN—k+41y--- sYN~1,YN € J = z, € J for some N > 0.

That is, every solution of Eq.(1.2) with initial conditions in J remains in J.

Let a = g—i(i, Z) and b= %(E, Z), f(u,v) is the function in Eq.(1.2) and T
is an equilibrium of the equation. Then the equation

Yn+1 = QYn + byn—k7 yn=0,1,... (13)

is called the linearized equation associated with Eq.(1.2) about the equilibrium
point Z. Its characteristic equation is

AFL_gak —p=0. (1.4)

Lemma 1.1. [1,4,6,7] Assume that a, 3 € R and k € {0,1,2,...}. Then
ol + 18] < 1, (1.5)
1s a sufficient condition for the asymptotic stability of the difference equation
Tptl —QLp+ P2n-x =0, n=0,1,2,.... (1.6)

Suppose in addition that one of the following two cases holds:
(a) k is odd and B < 0; (b) k is even and o3 < 0.
Then (1.5) is also a necessary condition for the asymptotic stability of equation

(1.6).

Lemma 1.2. [8] Consider the difference equation

Yn+1 = f(yn, yn—k)1 n=20,1,... (17)

where k € {1,2,...}. Let I = [a, b] be some interval of real numbers and assume
that f : [a,b] X [a,b] — [a,b] is a continuous function satisfying the following
properties:

(a) f(z,y) is non-increasing in x € [a,b] for each y € [a,b], and f(z,y) is
non-decreasing in y € [a,b] for each x € [a,b];

(b) The difference equation (1.7) has no solutions of prime period two in [a, b].

Then Eq.(1.7) has a unique equilibrium § and every solution of Eq.(1.7) con-
verges to .

Lemma 1.3. [8] Assume that f € [(0,00) x (0, 00), (0,00)] is such that: f(z,y)
is decreasing in = for each fived y, and f(x,y) is increasing in y for each fized
x. Let T be a positive equilibrium of Eq. (1.2). Then except possibly for the first
semicycle, every oscillatory solution of Eq. (1.2) has semicycle of length k.

Theorem 1.1. Consider the difference equation

Yn+1 =f(yn’ yn—k)y n=0,1,... (17)
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where k € {1,2,...}. Let I = [a, b] be some interval of real numbers and assume
that f : [a,b] x [a,b] — [a,b] is a continuous function satisfying the following
properties:

(1) f(z,y) is non-increasing in x € [a,b] for each y € [a,b], and f(x,y) is
non-decreasing in y € [a,b] for each x € [a, b];

(it) If (m, M) € [a,b] x [a,b] is a solution of the system f(m,M) = M and
F(M,m) =m, thenm =M.

Then Eq.(1.7) has a unique equilibriumy € [a, b] and every solution of Eq.(1.7)
converges to y.

Proof. Set mg =aand My = bandfori=1,2,..., set m; = f(M;_1,m;_1) and
M; = f(mi—1, M;_1).
Now, we observe that for ¢ > 0, mg < m; < - < my; < --- < M;

HOIA

< My < Mypand my <y, < M; for n > (i—1k+i setm
lim; oo m; and M = lim;_, o M;.

Then clearly m < lim;_ infy; < lim;_.oosupy; < M and by continuity
of f m= f(M,m) and M = f(m,M). and so m = M = 7. The proof is
complete. O

2. Linearized stability and periodic character

In the section, we consider the linearized stability and periodic character of
the positive solutions of Eq.(1.1). Eq.(1.1) has the unique positive equilibrium
y given by

g—1+/(g=1)2+4p(1+r)

V= 2(1+r)
The linearized equation associated with Eq.(1.1) about ¥ is
P+qy q—pr+qy
Zi1 + Z, — Zo k=0, n=01,...,
R O S (e (R

and it’s characteristic equation is
ARHL L D+qy k q—pr+qy

(1+ (14 r)y)? 1+ (1+r)7)?
From this and Lemmal.l., we have the following result.

Theorem 2.1. The positive equilibrium § of Eq.(1.1) is locally asymptotically
stable provided that one of the following two conditions is satisfied:

(i) g~pr+q7>0 and p+q—pr+2q5< 1+ (1+r7>%

(@) q—pr+qg<0 and p—q+pr<(1+(1+71)7)°.
Theorem 2.2. The positive equilibrium y of Eq.(1.1) is unstable provided that
one of the following two conditions is satisfied:

(a) kiseven, q—pr+qy<0and p—q+pr>(1+Q1+7r)7)7%

(b) kisodd, q—pr+qg>0 andp+q—pr+2qy > 1+ (1L+7r)y)°

In the following, we will consider the periodic character of Eq.(1.1).
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Theorem 2.3. The following results are true:

(1) If g > 1 and 0 < r < 1, then Eq.(1.1) has prime period-two solutions
e, @0, 0,0, .. iff k is odd and (g — 1)%(1 — ) > 4pr?, where the values of
® and U are the (positive and distinct) solutions of the quadratic equation

-1
91" P o
r 1—r

(2)If 0<q<1 and r > 1, then Eq.(1.1) has no nonnegative prime

period-two solutions.

Proof. (1) Let ¢ > 1, 0 < r < 1. Assume that there exist distinct nonnegative
real number ® and ¥, such that
e, YD U
is a prime period-two solution of Eq.(1.1). There are two cases to be considered.
Case(a): k is odd.
In this case, Yynt+1 = Yn—k, ® and V¥ satisfy

_ ptq?® _ ptgq¥
“Tro+re ™ Y= %40
then we have
1
<I>+\I'=q—r—, and wzl%, r#0,1

Now, consider the quadratic equation t2 — 9:—115 + 7% = 0. So, the value of ®
and ¥ are the (positive and distinct) solutions of the above quadratic equation,
i.e.,
-1 —1 4
=y f(aehy2 - e

s 1-7

t:

2
Case(b): k is even.
In this case, ¥, = Yn_k, ® and ¥ satisfy

®

14U+ Y 1+ 9 +1r®

then we have (® — ¥)(1 + ¢) = 0, So, ® = ¥. This contradicts that & and ¥
distinct nonnegative real number.

(2) According to the assumption, there are four cases to be considered. (i)
0<g<l,r>1;(li)0<g<l, r=1(Gi)g=1r>1({iv)g=1r=1.

Now , we just give the proof of the theorem for case (i), the other three cases
are similar and we omitted them. Let 0 < ¢ < 1, r > 1. Assume that there
exist distinct nonnegative real number ® and ¥, such that ... , &, ¥, &, ¥ ... is
a prime period-two solution of Eq.(1.1). There are two cases to be considered.

Case(a): k is odd.

In this case, yn+1 = Yn—k, ® and V¥ satisfy

P R\
@—& and ¥ = pta

T 14T 47 T 14+ D+rT
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then we have

1
o+v=2""and cm:lL, r#0,1
T

Since ®¥ > 0, ®, ¥ is distinct nonnegative real number, this implies that
p(1—r)>0,

that is, 7 < 1, which contradicts the hypothesis that r > 1.
Case(b): k is even.

In this case, yn = Yn—k, ® and ¥ satisfy

__pre¥ 4 g _PHe®

1+¥ 40 1+®+4rd
then we have (® — ¥)(1 +¢) = 0, So, ® = ¥. This contradicts that ® and ¥
distinct nonnegative real number. The proof is complete. ]

3. Analysis of semicycles and oscillations

In this section, we give the character of semicycles, oscillations and invariant
intervals.

Theorem 3.1. Assume that ¢ — pr > 0, then either {y,} oscillates about the
equiltbrium T with semicycles of length k after the first semicycle, or y, converges
monotonically to .

Proof. The proof follows from Lemma 1.3 by observing that the condition g —
pr > 0 implies that the function

p+aqy
z, = T
f(z,9) l+z+ry
is decreasing in # and increasing in 3. The proof is complete. g

We now examine the existence of intervals which attract all solution of Eq.(1.1).
Theorem 3.2. Let {y,}5° . be a solution of Eq.(1.1). Then the following
statements are true:

(1) Suppose ¢ —pr >0, 0 < g <1, r> 1, and assume that for some N > 0,
N
2+q-—p’
then y, € [Mﬁ, p] forall n > N. That is, the interval [ﬂ;"i—p’ p| is an
invariant interval of Eq.(1.1).

(2) Suppose ¢ —pr >0, ¢ >1, 0 <r < 1, and assume that for some N > 0,

YN—kt1s-+- YN—1, YN € | p],

YN—k+1 Y yn €[ P fl_]
—k+1y--+- s YN-—-1, q+’f"’f"
then y,, € [;’_’%, I, for all n > N. That is, the interval [qpﬁ, 11 4s an invari-

ant interval of Eq.(1.1).
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Proof. (1) If for some N > 0, =2— < yy < p, then

> 24q-p
P+ QYn—k < D+ TYn—k <p, since g<r

L+ 9yn +7Yn—k = 14+ Yn +7TYn—k
<yny <p <1, then

Ynt1 =

also, it follows that 0 < 5=£— -

> _PHPYn-k p(1+ 32— p)>p(1+—2+lq)_p)> p
T ltyetryer — 24rp T 249 T 2+4q-p
(2)Iff0rsomeN>0,f‘:—TSyNS%,then

Yn+1

P+ qYn—k T4+qynr ¢
Z/n+1 - S = -
1+tyn+ryns = 1471yt T

On the other hand,

P+ qYn—k >p+qq+r _pr
I+ yn+rYns  1+24+q q+r

Yn+1 =
The proof is complete. O

4. Global stability

In this section, we will give the global stability for the equilibrium of the
Eq.(1.1).
Theorem 4.1. Assume that 0 < ¢ <1, r > 1, y& <p < %, then the positive
equilibrium of Eq.(1.1) is globally asymptotically stable.
Proof. Set
_ ptay
f(xvy) - 1+$+ry7

when ¢ — pr > 0, the function f(z,y) is decreasing in z for each fixed y, and
increasing in y for each fixed =z, also, clearly

p
—— < f(z,y) <p, forallz, y>0.
51q 5@V P Y
and when {1 <p< 1, 2—<y<p

Secondly, if 0 < ¢ < 1, r > 1, the only solution of the system
M
p+agm M= p+q

14+ M+’ C14+m+rM
ism=M.
Finally, when 0 < ¢ £ 1, r > 1, Eq.(1.1) has no solutions of prime period two
. Now the result is a consequence of Theorem 1.1. g

Theorem 4.2. Assume that ¢ > 1, 0 < r < 1,q—pr > 0 and k odd, then
the positive equilibrium of Eq.(1.1) is globally asymptotically stable when (q —
1)2(1 = r) < 4pr2.
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Proof. Set
_ _btay
f(zvy) - 1+1'+Ty’
when g — pr > 0, the function f(z,y) is decreasing in z for each fixed y, and
increasing in y for each fixed z, also, clearly
pr

q+r
Finally, since (¢ —1)%(1 — r) < 4pr?, Eq.(1.1) has no prime period-two solution.
Now the conclusion of the theorem follows as a consequence of Lemma 1.2. O

< flz,y) < g for all z,y > 0.

REFERENCES

1. M.R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations
with Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, 2002.
2. W.A Kosmala , M.R.S.Kulenovié, G. Ladas, and C. T. Teixeira, On the Recursive Sequence

Pr+yn—1
prrmerym— J. Math. Anal. Appl. 251(2000), 571-586.

3. R.DeVault, W.Kosmala, G.Ladas, and S.W.Schultz, Global behavior of yn11 = ﬁ_’y‘;—:,
Nonlin. Anal. 47(2001), 4743-4751.

4. Y.H. Su and W.T. Li, Global Attactivity of a Higher Order Nonlinear Difference Equation,
J. Diff. Equat. Appl. 11(2005),No.10, 947-958.

5. Saber N. Elaydi, An Introduction to Difference Equations, Springer, Berlin, 1996.

6. S.A. Kuruklis, The Asymptotic Stability of £,11 — axn +bxpn_j =0, J. Math. Anal. Appl.
18 (1994), 8719-8731.

7. V.L. Kocic, G. Ladas, I.W. Rodrigues, On rational recursive sequences, J. Math. Anal.
Appl. 173 (1993), 127-157.

8. M.Saleh and S.Abu-Baha, Dynamics of a higher order rational difference equation,
Appl.Math.Comput. 181 (2006), 84-102.

9. M.S. Reza and M. Dehghan, Global stability of yn 11 = p—J%———?";k, Appl. Math. Comput.
182 (2006), 621-630.

10. W.T. Li and H.R. Sun, Dynamics of a rational difference equations, Appl. Math. Comput.
163(2005), 577-591.

Ynt+1 =

YanQin Wang received her BS from QuFu Normal University and MS at the East China.
Normal University(ECNU) under the direction of DeMing Zhu. Since 2004 she has been
at School of Physics & Mathematics in the Jiangsu Polytechnic University, where she was
appointed as lecturer in 2006. Her research interests focus on dynamical systems theory
branch and difference equation theory. Also she does consulting in Mathematical Biology .

School of Physics & Mathematics, Jiangsu Polytechnic University, Changzhou, 213164,
Jiangsu, P.R.China

e-mail: wangyanqin336@sina.com



