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THE GENERALIZATION OF STYAN MATRIX INEQUALITY
ON HERMITIAN MATRICES
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ABSTRACT. We point out: to make Hermtian matrices A and B satisfy
Styan matrix inequality, the condition “positive definite property” de-
manded in the present literatures is not necessary. Furthermore, on the
premise of abandoning positive definite property, we derive Styan matrix
inequality of Hadamard product for inverse Hermitian matrices and the
sufficient and necessary conditions that the equation holds in our paper.
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1. Introduction

Let C™*", H(n), Hy (n) and H*(n) be the sets of nxn complex, Hermitian,
positive semi-definite and positive definite matrices, respectively. When the
matrices A, B € H(n) satisfy A — B € Hy (n), we call A, B to have Léwner
partial ordering inequality A > B or B < A. Therefore, if A € Hy (n) (H*(n)
), write it as A > 0(> 0). A(«, 8) is the submatrix of A lying in rows indexed
by o« C<n >={1,2,---,n} and columns indexed by 3 c< n >, and A{a,a) =
A(a). A* = (A)T is the conjugate transpose matrix of A, I is identity matrix.
E;; € C™*™ is diagonal matrix that its ith diagonal element is 1 otherwise 0,
and Z,, = [Ey1, Fag, -+, Enn)* € Cm**n Hadamard and Kronecker products of
matrices A = (a;;), B = (B;;) are denoted by Ao B = (a;;b;;) and A® B =
(a:;B), respectively. If every diagonal element of R €Hf (n) is 1, we call R as
a correlation matrix (see [8] or [2, 5.5.10]). CH*(n) denotes the set of n x n
positive definite correlation matrices.
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In 1973, using the method of multivariate analysis, Styan (see [8, Theorem
4.1 and Corollary 4.2(4.21)]) proved the matrix inequalities as follows

RoR—-2(R'oR+I)"!' >0, Re CH*(n); (1)

R'oR+I-2(RoR)™ >0, Re CH"(n). (2)

Moreover, the general forms of (1) and (2) are obtained as well (see[8, Corollary
4.3] or [12, ppl74-175, (6.1.11), (6.1.12)])

AocA—-2Ao (A 0o A+ )" (AoI) >0, A€ HM(n); (3)

A oA+ T —2A0D)(AoA) N Aol) >0, Ac Ht(n). (4)

Meanwhile, Styan [8] pointed out “a matrix-theoretic proof of Theorem 4.1 would
be of interest”.

The researches on Styan matrix inequalities (1) and (2) have been noticeable
all the while. {1,4,5,9,11] etc gave many generalized results by applying the
matrix method. In 1979, for A,B € H*(n), T. Anto derived the following
conclusion(see {1, Theorem 20 and pp239] or [12, ppl75])

AoB>(Aol+Bol)(AoB '+ A ' o B+2I) ' (AoI+Bol), (5)

In 2000, S. Liu generalized (4) to the positive semi-definite matrix (see [4,
Proposition 1]), and in 2002, S. Liu also introduced this conclusion on Khatri-
Rao product (see [5, Theorem 5]). In 2000, as an application of the obtained
results, Visick gave (4) and (2) (see [9, Theorem 20]). In the same year, when
A, B € Ht(n), F. Zhang derived the further results in [11, Application 4 and
(15)]) as follows

AoB '+ A oB+2I> (Aol +BoI)(Ao By (AoI+Bol), (6)

AoB™' + A7 o B+2I 2 4(AoB)”, A, BeCH"(n). (7)

In view of the ideas of [4] and [5], Al Zhour and Kilicman studied the gener-
alization of Styan matrix inequality for Khatri-Rao product on the basis of [9]
in 2006 (see [14, Theorems 4.6-4.8] or [15, Theorem 2.11]), these results in [14]
are all about positive definite matrices, the researched object in [14] and that in
[1,2,4,5,8,9,11] are all positive (semi)definite matrices.

11 -1 1 1171 1 .
Example 1. Let A = 301 1 ], B = 3 [ 1 _2] € H(2), then the in-

equality (6) holds, it is because

(AoB~'+ A~ Yo B+2I)—(AoI+Bol)(AoB)~'(Aol+Bol) = [ } i } € Hy (2).
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Example 1 indicates “positive definite property” is not necessary condition
that Styan matrix inequality (6) holds.

In our paper, we will give Styan matrix inequality of the inverse Hermitian
matrices, our results summarize the corresponding ones about positive definite
matrices in the present literatures. The discussion on equation conditions of
matrix inequalities is very important (see [6], [7, Corollary 1.3], [10] etc), but
[1,2,4,5,8,9,11} do not deal with this problem, however, our results include equa-
tion conditions. By the following Example 2, we know that not all invertible
Hermitian matrices can satisfy the inequality (6), thus it is natural to add some
restricted conditions.

1

1 1 2

Example 2. Let A = -1 }, B= [ —ll
(6) does not hold, this is because

] € H(2), then the inequality

Um34+A*wB+my4Au+waAwﬂ-wmﬂ+3u):%["49 -m}.

-31 34

2. Prepared knowledge

From [2, Problem 4.2.14] and [9], for complex matrices A, B, C, D with ap-
propriate order, we have

(A®C)® (B® D) = AB® CD; (8)
(A+B)®C=A0C+B®C, AR(B+C)=A@B+A®C; (9)

(A® B)"' = A™' ® B! (where A and B are inveritible),

10
(A® B)* = A* ® B*; (10)

(AoB)=Z}(A® B)Zy, A, BE€C™", Z, =By, o, , Ena]” € CV M,
(11)
(A® B) € H(n*)(or Hf (n?), H*(n?)), Ao B € H(n)(or Hor {(n), H*(n)),
(12)
where A, B € H(n) (or Hy (n), H*(n)) in (12). For M € C™*™ and M(a') is
invertible (appointing [M{a/)]"' = M(a/)™1), we call
M/ (= M/M(d)) = M(a) — M{a, oYM (o/Y ' M(c/, ),
as the general Schur complement of M{«') in M, where o C<n >, o/ =< n >
~a. In view of [13], there is a permutation matrix U such that

M(a) M(a, o)

WMU:{M@%Q M(a)

e cnen, (13)

thus
UsMU/M(a') = M/o' = M(a) — M(a,aYM () *M (¢, ). (14)
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Lemma 1. Let C € C™™, M € H(n) be invertible and appoint C(a)* =
(Cla)*,ac<n>, o =<n>—a If M 1(a') >0, then M(«a) is invertible
and
C(a)*M(a)~'C(a) < (C*M™IC)(w), (15)
moreover, the equality in (15) holds if and only if
MY, a)C(a)+ M~ Ha')C(d/,a) = 0.

Proof. In view of [12], there exists a permutation matrix U such that (13) holds.
Noting that

U*(C*M~'C)U = (U*CUY (U*M~'U)(U*CU),
thus, from (13), we get

M~Ya) M Ya,d
1

UM~ = [ M-1Y(d,a) M)

| e o,
o[ 8 %)

(C*M~1C)(a) (C*M~'C)(a, o)

UX(C*MIO)WU = [ (C MO a)  (C*MIC)a) ] € H(n).

(16)
According to [3, 7.7.5] or [13, Application 1], we have
(F/a)™t = F~ () (F/a)™' = F7(a))

when F € H(n) and F(a)(F(a')) are invertible .

From the known conditions, it shows that M~ € H(n) and M () are in-
vertible, then by the above facts, it follows that M () is invertible and M~'/a’ =
M(a)™t.

Moreover, let W = !

0
AU A a) T , from (13), (14) and (16), we

have
W*U*M~YUW = diag(M~*/o/, M~1())
=M1 oM ) (17)
=M(a) e M7 (),
C(a) Cla,d)

X Y ’
where X = M~1(a/)"*M~Y(/, @)C(a) +C(c/, @). From the fact X*M~1(a/)X
> () obtained by using M ~(a’) > 0 and the identity

U*C*M™CU = (W-\U*CU)*(W*U* M~ UW)(W~U*CU),

w-lu*cu = [ (18)
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thus from (16)~(18), we have
(C*M™1C) (@) = (Cla)*, X)) (M ()™ & M~ 1) (C(a)*, X*)*

= Cl{a)*M(a)~'C(a) + X*M M) X

> C(a)*M(a)™'C(a),
namely, (15) holds. And

the equation holds & X*M~'a/)X =0& X =0,
which is equivalent to
M HoX = M~ (d/,0)C(a) + M~H{YC(d/,a) = 0,

this completes the proof of Lemma 1. a

When M €H*(n), then M~1(¢’) > 0 holds automatically, hence [11, (7) in
Theorem 1] can be obtained by Lemma 1.

Lemma 2. Let F,G € H"(n), for any T € C™*", then
F>TG'T*" & G>T*F T and F = TG™'T* & G =T"F'T.
F T
™ G
_polT
{i —GiT* ? } and @ = [ é FI 1 },such that

Proof. Meantime, we have M = € H{(2n), and there exist P =

PPMP=(F-TG'TY® G, QMQ=Fo(G-TF'T),
which indicates that
F>TG™'T* & PPMP € Hf (2n) & Q*MQ € H (2n) & G > T*F'T
and
F=TG T & rankP*MP = rankG =n
S rankQ*MQ = rankF =n

& G=TF'T.
a
3. Main results
By applying (11) and (9], we derive
(A® B)(a) = Ao B, A,BeC™™" (19)

where o = {1,n+2,2n+3,--- ,(n—=2)n+n—1,(n— Un+n} C<n? >.
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Theorem 1. Let A, B € H(n) be invertible, o be determined by (19) and o/ =<
n? > —a. If (A® B)~Y(a’) > 0, then Ao B is invertible and

AoB 1A' oB+2I>(AoI+Bol)(AoB) Y(AoI+Bol). (20)
Moreover, the equation in (20) holds if and only if
(A® B Hd/,a)(Ao I+ Bo)+ (A® B) (o) (A® I+ I® B)(c/,a) =0.
(21)

Proof. Let C = A® I+ 1® B, M = A® B. From (12), we have C € H(n?).
Through (10), it follows that M is invertible. Applying the above facts and the
assumption M~ 1(a’) = (A® B)"!(’) > 0, we obtain that C and M satisfy the
hypothesis of Lemma 1, furthermore, from (8),(9), (10) and (19), it follows that
Ao B = (A® B){(a) is invertible, and

C*MIC=(A0I+I®9B)(A'eB ) A®I+1®B)
=A®B '+ A '®B+2(Ix]I),

however, C(a) = (A® I + I ® B)(a) = (A® I)(a) + (I ® B)(«w), furthermore,
from (19), it follows that

(C*M™'C)a) = AoB™ '+ At o B+2I; (22)

Cla)=Aol+IoB=Aol+Bol. (23)
Thus, by (15), (22) and (23), we have
(AocI+Bol)(AoB) Y (AoI+Bol)
= C(a)*M(a)"C(a)
<(C*MTIO)(e)
=AoB '+A'oB+2I
i.e., the inequality (20) holds. By applying (8), (9), (10)and (23), it follows that
MY d,e)C(a) + M~H)C(d, )
=(A®B)™'(¢/,a)C(a) + (A® B) " (o)C(e/, )
=(A®B) Hd,a)(AoI+Bol)+ (A® B) M) (A® I + I ® B)(/, ),
thereby, we have gotten that
the equation in the inequality (20) < the equation (21) holds. [

Corollary 1. Let A, B € HY(n), then the inequalities (20) (i.e., (6) ) and (5)
hold, and

the equation in (20) holds & the equation in (5) holds
& the equation (21) holds,
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particularly, when A, B € CH™(n), then the inequality (7) and
AoB>4(AoB '+ A oB+20)7! (24)
hold, and the equation in (7) holds < the equation in (24) holds &
2A®B) N ,a) + (A@ B HaWARIT+1® B)(o,a)=0

Proof. In terms of (12), it follows that A ® B € H*(n?), thus the hypothesis of
Theorem 1 is satisfied, it follows that the inequality (20) (that is (6)) holds, and
the equality in (20) holds <> (21) holds.

Let F=AoB '+ A 'oB+2],G=AoBandT =Aol+ Bol. From
(12), we have both F and G are positive definite, thus by applying Lemma 2,
we derive

F>TG'T* & G>TF'T,
thereby,
the inequality (20) holds < the inequality (5) holds
and
the inequality (20) holds < the equation in (5) holds.

When A, B € CH"(n), then Aol + Bol = 21, thus the inequality (7) can be
obtained by (20). And using (5) or Lemma 2 again, it follows that the inequality
(24) holds, according to the same reason, we can easily get the corresponding
equation condition. a

Take A = B in Corollary 1, we obtain

Corollary 2. Let A € H™(n), then the inequalities (3) and (4) hold, and the
equation in (3) holds < the equation in (4) holds &

204@ A) N, a) (Ao I) + (AR A) Mo NART+TQ A, a)=0;  (25)

In particular, when R € CH"(n), it follows that the inequalities (1) and (2)
hold, and the equation in (1) holds < the equation in (2) holds &

2AR® R)" o ,a) + (ROR) M/ WRQ T+ IR R)(,a)=0.  (26)

In light of the proof of Corollaries 1 and 2, we know that (1) and (2), (3)
and (4), (5) and (6), (7) and (24) are mutual determined, moreover, they can
be obtained from Theorem 1, the basic reason is that: when A, B € H*(n), the
hypothesis of Theorem 1 is naturally satisfied, meantime, the equation conditions
of the inequalities related to [1,2,4,5,8,9,11] can be obtained from Corollaries 1
and 2. From Example 1, we know Theorem 1 generalizes Styan matrix inequality
(6) of positive definite matrices in [1,2,4,5,8,9,11] to more extensive range. In
fact, A, B € H(n) in Example 1 are not positive definite, but they can still make
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-1 1
the inequality (6) hold, the reason lies on: meantime, from A~ = [ 11 1 ],
1 2 1 , '
B™ = 1 e= {1,4}, & = {2, 3}, we derive

(AP ®@B ) () = [ } ; ] > 0,

i.e., which satisfies the hypothesis of Theorem 1.

Example 3. Let A, B be the ones like Example 1, meantime, although the in-
equality (6) holds, but (5) does not hold. It is because

1 —
(AoB)—(AoI+IoB)(A 'oB+B o A+2I)™ ! (AoI+Bol) = 30 [ 1%)0 _1:([)6 ] ‘

Example 3 indicates: after abandoning “positive definite property”, the in-
equalities (5) and (6) are not mutual determined anymore.

Theorem 2. Let A, B € H(n) be invertible, and o be determined by (19), &' =<
n? > —a. If AQI+1® B is invertible and (A9 B~'+ A~ '®@B+2I)" (/) > 0,
then the inequality (5) holds, moreover, the equation in (5) holds &

(AB '+ A '@B+2I)"Ydo,a) (Aol + BoI)+

(A B +A'@B+2D) Y YA I +1®B)(d,a)=0. (27)
Proof. Let M = A B+ A"'®@B+2I,C=A®I+1®B € H(n?. We

konw A ® B € H(n?) is invertible from (10). In this case, by (8), (9), (10) and
the fact that C = C* = A®Q I + I ® B € H(n?) is invertible, it follows that

C*(A®B) 'C=(A®I+I1®B)(A®B) "(A®I+1® B)
=(AQI+I®B)Y(A ' @B H(ARI+1 B)
=A®B '+ A '®@B+2I =M c H(n?
is also invertible. And by the known conditions and (19), we have
MY dy=(A®@B'+A'®@B+2)"'(d) >0,

which shows that the matrices M and C satisfy the hypothesis of Lemma 1.
Noting that (8), (9), (10) and (19), we derive

A®B=C*(C*(A®B)"'C)"lCc=C*M~C ¢ H(n?);

(AoI+Bol)(AoB '+ A 'oB+2I)"Y(AoI+ Bol)
=(AQI+I®B)()(A®B '+ A @B +2N)(a) ' (A®I+ IR B)(a)
= C*(a)M(a) 1C(a).
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Thus, in terms of (15) in Lemma 1, we have

AoB = (A® B)(a) = (C*M™'C)(a)
> C*(a)M(a) 1C(w)
=(Aol+Bol)(AoB '+ A ' oB+2I) Y(AoI+Bol),

namely, the inequality (5) holds. Furthermore, by Lemma 1, it follows that the
equation in (5) holds <

MY/, a)C(a) + M~Y(o)C(d, )
=(A®B '+ A'@B+2D) " (/,a)(Ao I+ 0 B)

+(A®B '+ A @B+ 2) Yo YAQI+1® B)(,a)
= 0’

which indicates that the sufficient and necessary condition that the equation in
(5) holds can be determined by the identity (27). o

From (8), (9) , (10) and (12), we know that A®I+1®B and AQB '+ 41
B+21 are positive definite when A, B € H*(n), so the hypothesis of Theorem 2
is satisfied naturally. Thus, Theorem 2 is viewed as the generalization of Styan
matrix inequalities (1), (3) and (5) under abandoning the condition of “positive
definite property”. As the application of Theorems 1 and 2, we can get the
generalization of Styan matrix inequality (1)~(4) about the inverse Hermitian
matrix easily .

Corollary 3. Let A € H(n) be invertible, a be determined by (19), o/ =< n? >
—a, then

(1) if A T+1®A isinvertible and (A A~ + AP @ A+ 20" Y(o/) >0
then

b

AoA-2(Ac (A oA+ T) Y (A0I) >0
and the equality holds
S2ARAT + AT QA+ 2D) T a) (Ao T)
+AQATT+ AT @A 2D W YNAR T+ 1® A) o, a) =0;
(2) f(A® A)'(d/) >0, then Ao A is invertible and
A oA+ T — 2(AoI)(AoA)71(AoI) >0,
and the equality holds < the identity (25) holds.
Corollary 4. Let CH(n) be the set of inverse Hermitian matrices that all

the diagonal elements are 1. When R € CH(n), if o is determined by (19),
o =< n? > —q, then
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(1)

(2)

1.

2.

3.

10.

11.

12.

13.

14.

15.

Yang Zhongpeng *, Feng Xiaoxia, Chen Meixiang

if R® I + I ® Ris invertible and (R R™' + R™' @ R+ 2I)' (/) > 0, then
RoR—2(R_loR+I)"1 >0,
and the equality holds
©2RIR'"+R'QR+2)7'(d,a)

+(ROR'+R'®R+2D))RRI+I®R)(d,a)=0;

if (R® R)™'(a’) > 0, then Ro R is invertible and

R'oR+I-2(RoR)"! >0,
and the equality holds < the identity (26) holds.
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