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PERIODIC SOLUTIONS FOR DISCRETE ONE-PREDATOR
TWO-PREY SYSTEM WITH THE MODIFIED LESLIE-GOWER
FUNCTIONAL RESPONSE

XIANGYUN SHI, XUEYONG ZHOU* AND XINYU SONG

ABSTRACT. In this paper, we study a discrete Leslie-Gower one-predator
two-prey model. By using the method of coincidence degree and some
techniques, we obtain the existence of at least one positive periodic solution
of the system. By linalization of the model at positive periodic solution
and construction of Lyapunov function, sufficient conditions are obtained
to ensure the global stability of the positive periodic solution. Numerical
simulations are carried out to explain the analytical findings..
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1. Introduction

Predator-prey phenomena have many important applications in many differ-
ent field, such as biology, economic, ecology and others sciences. The study of
predator-prey phenomena is now a dominant problem in many ecological sci-
ences. There is a growing explicit biological and physiological evidence that
in many situations, especially when predators have to search for food, a more
suitable general predator-prey theory should be based on the Holling IT function
response. But, recently, a major trend in theoretical work on prey-predator dy-
namics has been to derive more realistic models, trying to keep to maximum the
unavoidable increase in complexity of their mathematics. These models incor-
porates a modified version of Leslie-Gower functional response as well as that of
the Holling-type II [1-4].

They consider the following model
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with the initial conditions 4{0) > 0 and v{0) > 0. This two species food chain
model describes a prey population u which serves as food for a predator v. The
model parameters @y, dg, b, ¢, ¢, k1, ko are assuming only positive values.
These parameters are defined as follows: @, is the growth rate of prey u, b
measures the strength of competition among individuals of species u, ¢; is the
maximum value of the per capita reduction rate of u due to v, k; (respectively,
ko) measures the extent to which environment provides protection to prey u
(respectively, to the predator v), @2 describes the growth rate of v, and & has a
similar meaning to ¢;.

The Leslie-Gower formulation is based on the assumption that reduction in
a predator population has a reciprocal relationship with per capita availability
of its preferred food. Indeed, Leslie [5] introduced a predator prey model where
the carrying capacity of the predator environment is proportional to the number
of prey. He stresses the fact that there are upper limits to the rates of increase
of both prey u and predator », which are not recognized in the Lotka-Volterra
model. In case of continuous time, the considerations lead to the following:

dv v
% = 62?)(1 — @),

where G describes the growth rate of v and m measures the capacity set by
the environmental resources. In this formulation, the growth of the predator
population is taken as logistic type, i.e., % = a2v(1 — ). Where the measures
of the environmental carrying capacity K is assumed to be proportional to the
prey abundance that is, K = mu. Thus, the logistic equation becomes % =
aov(l — m), the additional constant m; normalized the residual reduction
in the predator population v because of severe scarcity of the favorite food,
simplifying, we obtain

dv as  v? &v

2

— =Gy — — = Aot — —=—
dt m 4y u+ ks

where kz = ™ and ¢; = %,

Yood webs are common in nature. Many investigations have been carried
out on multi-species ecological systems comprising of food chains of variable
lengths. The food web models are more complex and intractable as compared to
food chains as more complex multi level interactions are possible in food webs.
Relatively less attention has been given to the study of food webs and their rich
complex dynamical behavior. One can get the following non-autonomous one-
predator two-prey model with the modified Leslie-Gower functional response for

the predator:
{ 60 = s(@®) - ()2 - 5295),
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{y<t> Y(az(t) — ba(t)y — m2U5),

2(t) = z{as(t) — #;_(:Em)y

(1.1)

where = and y are the prey, z is the predator. And a;(t) (¢ = 1,2,3), bi(t)
(i=1,2), ci(t) (G = 1,2,3), ds(t) (i = 1,2,3) € C(R,R"), Rt = (0,+00) are
w—periodic function. These parameters are defined as follows: ai(t), ax(t) and
as(t) describe the growth rate of z, y and z, respectively; by(t), b2(t) describe
measures the strength of competition among individuals of species z and y,
respectively; cq(t) is the maximum value of the per capita reduction rate of x
and y due to z; di(¢) and da(¢) {respectively, d3(t)) measure the extent to which
environment provides protection to prey = and y (respectively, to predator z);
co(t) and c3(t) have the similar meanings to c¢;(¢).

The model (1.1) does not consider any direct competition between the two
prey populations, but they are in apparent competition through the shared pre-
dation. Indeed, this apparent competition appears, as both prey types are in-
cluded in predators diet. In the model, the third equation is written according
to the Leslie Gower scheme in which the conventional carrying capacity term is
being replaced by the renewable resources for the predator as « + y. The addi-
tional constant ds normalizes the residual reductions in the predator population
in case of severe scarcity of food.

However, many authors have argued that the discrete time models governed
by difference equations are more appropriate than the continuous ones when the
populations have non-overlapping generations [6-8]. Discrete time models can
also provide efficient computational models of continuous models for numerical
simulations. By considering the above factors, we extend (1.1) to the following
discrete model by the way of deriving discrete time version of dynamical systems
corresponding to continuous time formulations:

ok + 1) = x(k) exp(ay (k) — by (k)z (k) — mﬁ—’%gﬁ;ﬁ)
y(k +1) = y(k) exp(aa (k) — ba(R)y(k) — o2, (1.2)
2(k + 1) = 2(k) exp(as(k) — H@

which can be looked as a discrete analogue of system (1.1), where a;(k) (¢
1,2,3), bi(k) (i = 1,2), e;(k) (i = 1,2,3), di(k) (i = 1,2,3) : Z — R* are
periodic, i.e., a;(k +w) = a,(k), b; (k+w) bi(k), ci(k+w) = ci(k), di(k+w)
d;(k), for any k € Z, where Z, R* denote the sets of all integers, and nonnegative
real numbers, respectively.

In this paper, we derive a set of sufficient conditions for existence of positive
periodic solutions for the discrete two prey one predator model (1.2). Such an
existence problem is highly non-trivial and to the best of our knowledge, no work
has been done for the discrete model (1.2) of modified version of Leslie-Gower
functional response as well as that of the Holling-type 1I.

e

2. Preliminaries
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Let Z, Z*, R, R* and R? denote the sets of all integers, nonnegative integers,
real numbers, nonnegative real numbers, and three-dimensional Euclidean vector

w1
space, respectively. Let I, = 0,1,2,---,w—1, f =1 5 f(k), f\' = in%xf(k),
k:() S w
Y= igln f(k), where f(k) is an w-periodic sequence of nonnegative real num-

bers defined for k € Z. Let X, Y be normed vector spaces, L : DomL N X —Y
be a linear mapping, N : X — Y be a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dimKerL = codimImL < 400
and ImlL is closed in Y. If L is a Fredholm mapping of index zero and there exist
continuous projections P : X — X and @ : Y — Y such that ImP = KerlL,
ImL = KerQ = Im(I - Q), it follows that L|DomLNKerP : (I ~P)X — ImL
is invertible. We denote the inverse of that map by Kp. If Q is an open bounded
subset of X, the mapping N will be called L-compact on Q if QNQ is bounded
and KP(I-Q)N : Q — X is compact. Since I'm@Q is isomorphic to KerL, there
exists an isomorphism J : I'm@Q — KerL.

Lemma 2.1{Continuation Theorem {9]). Let L be a Fredholm mapping of indezx
zero and N be L-compact on Q . Suppose:
(a) for each X € (0,1), every solution x of Lz = ANz is such that x & 08);
(b) @Nzx # 0 for each z € QN KerL and the Brouwer degree deg{ JQN, N
KerL,0} # 0. Then the operator equation Lz = Nz has at least one solution
lying in DomL N .
Lemma 2.2([10, Lemma 3.2]). Let f : Z — R be w periodic function, i.e.,
flk +w) = f(k), then for any fized ki, ko € L, and any k € Z, one has

w—1

F(R) < f(ka) + D 1f (s +1) = f(s)],

5=0

w—1
fk) 2 f(k2) = Y |f(s +1) = f(s)].
g=0
Define I3 = {u = u(k) : u(k) € Rk € Z*t}. Let I* C I3 denote the
subspace of all w periodic sequences with the usual supremum norm |.|}, i.e.,
[lal] = max lu(k)|l, for any v = {u(k) : k € Z*} € l,,. It is not difficult to show

“isa ﬁmte~d1mens10nal Banach space. Let

w—1

Iy ={u={ulk)}elv: Z u(k) = 0},

$==0
I ={u={uk)} el”:uk)=hec R kecZt}

Then it follows that [ and [2 are both closed linear subspaces of [ and I* =
g Py, dimly =

Lemma 2.3. If condition (H): min{a; — by, a2} > as, max{cy,c5'} > cf,
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max{ % dL , dL} < holds then the algebraic equation

_7 k)v
a] = bl’Ul + Z U1+U2+d13( k)

643

Ay = byva + Z Z —calklva__ (2.1)
k

= vi+va+da (k)’

w—1
= 1 c3(k)vs
ay =4 T iy

- —0 v1+va+ds(k)
. ) .
has at least one positive solution (v, vs,v}).

Proof. From the third equation of (2.1), we have

asw

vy = — (2.2)

w—1

cs(k)
Z v1+vz+ds (k)

From the first two equations of (2.1) and the equation (2.2}, we can easily derive

w=1 w—1
k k
s i > el P T
a1bg + a2by = biba(vy + v2) + bgdgL:l— +hias =
ek S el
s vitvztds(k) — v1tvatds (k)
Define
w—1 w—1
c1(k) ca(k)
2_: u+1d1(k) _ 20 u+2d2(k)
flu) = @1bo + dgby — bibou — b2a3_:1—_— — bla?’w;—l__——'
Z ca(k) Z c3(k)
= wtds(k) =y wtds (k)

One can easily see that lim f(u) < 0, and

Z c1 (k) ca(k)
dq (k) _ do (k)
a ~ k=0
f(0) = aiby + Goby — biby — boGg =0 — biagt=t——
Z cg(k) ca(k)
dg (k) dg (k)
kEO U k=0
1 2
L _ dL
> a1b2 + a2b1 - b1b2 — b2a3 — bla 7

> a1b2 -+ CLle — b1b2 - b2a3 — b1a3 > 0.

Then from the zero-point theorem, it follows that there exists a u* > 0 such

that f(u*) =0.

Now we shall claim that v > 0(i = 1,2,3). Obviously, vi +v3 > 0 and
v3 > 0. From the first equation of (2.1) and substituting (2.2) into it, we have
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wil ik
&= v1+vz-+dy (k)
——

[543 Kol

4y = by + b3

ca(k)
kz—jo ’v1+vz+d3(k)

Then
w1 w1 U
> _alk) YA
. 1 = v vl +di (k) 1 = vitvi+dl
v :g—)—(al—ag#————)> :_(al_GBw—l L )>0
1 C3(k) 1 c
l?:jo vl 4vi +ds (k) o v+l +d313

Similarly, v5 > 0. The proof is completed.

3. Main results

Theorem 3.1. If condition (H) holds, system (1.2) has at least one positive
w—periodic solution.

Proof. Make the change of variables
z1(k) =In{z(k)}, w2(k)=In{y(k)}, z3(k)=In{z(k)}. (3.1)
Substituting (3.1) into (1.2), we have

z1(k +1) = 21(k) = ar(k) - br (k)emr ® — ewl(k(;]:f-(:;z:?;)(:)dl(k)7

ca(kle” (k)
Ta(k + 1) — z2(k) = as(k) — ba(k)e®2(*) — erlik>+(fa):z<:)+d2(k), (3.2)
z3(k +1) — z3(k) = as(k) — cg(k)ere®)

e?1 (k) pex2(k) 4dg (k)"

It is easy to say that (3.2) has an w—periodic solution {(z3(k), z5(k), z3(k))},
then {(z(k),

y(k), z(k))} = {(e®1(¥) e%2(K) ¢=3(k))} is a positive w~periodic solution of system
(1.2). Therefore, to complete the proof, it is only to show that system (3.2) has
at least one w—periodic solution. Define X = Y = [*, the difference operator
L:X — X given by Lz = {(Lz)(k)} with (Lz)(k) = z(k+1) —z(k), forz € X
andk € Z,and N : X — X as follows

ok o (k)es (0
1 a1 (k) — by (k)em ®) — exl(k()iea):;k}(j)dl(k)
e
N| @2 | = ag(k)— ba(k)e™s® — eﬁ(kc)i:iz(k)—kdz(k) ' (33)
T3 ag(k‘) . ca(k)e®3 ()

e®1 (k) 4 ex2 (k) pdg (k)

for any (x1,22,23)7 € X and k € Z*. It is trivially easy to see that L is a
bounded linear operator and KerL =¥, ImL =l , as well as that dimKerL =
3 = codimImL. Since ImL is closed in Y , it follows that L is a Fredholm
mapping of index zero. Define
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B w—1
LY au(s) |
T T =0 T
P=|a |=Q| x| =| 2 aas) |, | 22 | €X=Y.
T3 z3 =0 z3
L % > x3(s)
s=0 d

It is easy to show that P and () are continuous projections such that ImP =
KerL and ImL = Ker@Q = Im(I — Q). Then, the generalized inverse Kp :
ImL — KerP 1 DomL exists and is given by

E—1 =
Kplw) = Y a(s) = = 3w — )als).

k=0 s=0
Then QN : X - Y and Kp(I ~ Q)N : X — X are given by

=
QNz = ;;Nw(s)

and
k-1 k-1 k-1
Kol = QNa = 3" Na(s) - = 3w — s)Nas) — (& — ) S Nas)

It is trivial to show that N is L—compact on @ C X. In order to apply Lemma
2.2, we need to search for an open bounded subset Q.
Corresponding to three operator equation Lz = ANz, A € (0,1), we get

[&5) ex (<)
zi(k + 1) = 21(k) = Maa (k) — by (k)en®) — 5l ],
zo(k) ca(k)es®)
w3 (k+ 1) — 22 (k) = Aaa(k) — by(k)e™ ) L (34

er1 (R pex2(F) Ly (k)

ca(k)eT3(F)
«TS(k + 1) - 753(](7) [ ( ) - exl(k)i(ez)Q(k)+d3(k)]'

Suppose that z = {z(k)} = {(z1(k), z2(k), z3(k))} € X is a solution of (3.4) for
a certain A € (0,1). Summing on both sides of (3.4) form 0 to w —1 with respect
to k, we can derive

w—1 _1 .
Gw =y bi(k)en® + “’Z o1 (ke ®)
k=0

e®1(F) fex2(k) 1 d; (k)
w—1
_ - ca(k) e@3(k)
i = 3 balk)e™® + z e (3.5)
w:l &)
~ _ ca(k)e®s!
asw = kE_:O e=1(F) tes2(M 1dy (k)

From (3.2) and (3.5), we have

(k)
E _ E : 71 (k) ci(k)e® < 9
2 (k1) =k B)+bu(k)e™ +eﬂﬂ1(k) + ex2(k) 4 dl(k)) =20

(3.6)
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w—1 w—1 z3(k)
— zo{k) CQ(k)e _
’;) |z2(k+1)—z2(k)| < g)(az(k)m(k)e Tt o T k)) < 2w,
(3.7)
and
w—1 w—1 Cg(k))€$3(k) B
;) lza(k + 1) — z3(k)| < kz::O(ag(k) -+ ez (k) 4 gra(k) dg(k:)> < 2dzw. (3.8)
It follows from (3.5) that we have
w1
bf > " em® <ol (3.9)
k=0
w—1
by > e < afw, (3.10)
k=0
and
CU w—1
333 Z e®®) > qly. (3.11)
3 k=0 '

Since # = {z(k)} € X, there exist &,n; € I,{i = 1,2,3) such that z;(§) =
L%iln{xi(k)}, zi(m:) = gcrga}x{m,(k)} By (3.9}, (3.10) and (3.11) we have

ay
z1(&1) <lIn L : (3.12)
I
ay
162(&2) < IIVbT, (3.13)
2
and
akd¥
z3(n3) > In iu3 . (3.14)

3
(3.12) and (3.13) together with (3.6) (3.7) and Lemma 2.2 lead to

w—1

U
z1(k) <zi(6) + Y la(s + 1) — za(s)| < 1n%;; +20%w 2 Hy,  (3.15)
s==() 1
and
w—1 aU N
z2(k) < x2(&2) + Z |za(s + 1) — z2(s)| < ln-b% + 2a5w = Ho. (3.16)
s=0 2

By using the third equation of system (3.5), one can deduce that

cheva(&a)y

U
Qg W > |
377 et 4 eHa 4 dU
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From above, we have

aff (e + e + df ‘
23(€3) < In =2 ( o’ 5)‘ (3.17)

Also by Lemma 2.2 we have

& Ly
za(k) < z3(€2) + > g(s+1) —za(s)| < ln 2 (e CZ 3) 490V 2 H,.
s=0 3
(3.18)

From (3.5) and (3.18) we have

w1 w1 A o H
LDl(k) = _ Cy (]‘\/)6
Z bi(ke > Gw Z A

k=0 E=0
Therefore U
wb%’e“’l () > a{‘w - 2—%6“%&,
1
ie.,
dL _ CUeHg
z1(m) > In L (3.19)
ot
Similarly, we can get
Ll _ oUoHs
Ta(np) > In 22 2C (3.20)

by dk
It follows from (3.6) (3.7) (3.19) and (3.20) and Lemma 2, we have

LdL _ C¥€H3

A
) > x1(m) Z |z1(s+1)—z1(s)| > n? —2d¥w = 81, (3.21)

b7 dt
w1
abdl — celts A
zo(k) > xg(m)—; |z2(s+1) —x2(s)| > In bgd; —2aYw = S5 (3.22)
Similarly, we have
w1 L L
(k) > 233 7]1) — Z lil?g S + 1) — 3?3(8)‘ > 111 3 w = 53 (323)

s=0
Denote
|zs(k)] < max{|Hi|,|Si[} 2 M;,i =1,2,3.
Consider the following algebraic equation
w~—1
T 1 (k)e3
B w1 o3
Gy = boe™? + % kzo e‘xf%m%%m;?)’ (3.24)

w1

=1 cg(k)e®s
a3 = 3 kZO €*1 +e¥24dy (k)"
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It is easy to see that if equation (2.1) has a positive solution (v}, v}, v3)T, then
(3.24) have a positive solution (3}, z3,23)T = (Inv}, Invs, Invj)”. From Lemma
2.3, we know that the algebraic equations (2.1) has at least one positive solution
if condition (H) holds.

Take M = M; + My + My + My, where M, is taken sufficiently large such
that ||(z7, 23, 25) 7|
= max{|z}|, |z}|, |z5|} < My. We now take Q = {z = {z(k)} € X : ||z|]| < M}.
It is clear that Q is an open bounded set in X and verifies condition (a) in
Lemma 2.1. When z € QN KerL,z = {(x1, 22, 73)7}, and (z1,72,23)T is a
constant vector in R® with ||z|| = max{|z1], |z2|, |z3|} = M. Thus, we have

I bqe®1 1 ot c1(k)e”3 |
ay—bie™ — 5 3 o +eP2+dy (k)?
z k=0 0
1 _ 1 w—1 ca(k)e®s
—_ A T2 _ L1 ___c2\m)e n
QN $2 _ a2 er w Z el +e:62+d2(k)7 # O
k=0 0
Z3 w—1 (k)e®
— 1 ca(k)e®3
az = X Z1te®2 1d3 (k)"

This proves that condition (b) in Lemma 2.1 is satisfied. Next, we show that
condition (¢) in Lemma 2.1 holds. Let J = I : ImQ — KerL, (z1,%2,73)T —
(71,2, 23)T, then

a1l G122 a13
deg{JQN(x1,z2,23)T, Q2N KerL, (0,0,0)T} = sign| a1 az2 a3 |#0,
asz1 a2 ass

where
— . -1 "
a] = Blezi _1 wzl c1(k)e”1 3 Qo = 1 K m(k)ew;emg
Yy Tt ()7 W 2 (e e dr (R)?
a3 = 1 = M asy = 1 wil fz(k)iﬁz;emg
@ pmo €Tl e by (k) w (e +e2 +da (k)2
—1 ok -1 -
ag = bye®z — L T __alketes asy = wz ca(k)e®s
“ g0 (71472 +dx(k))2’ W L e"1e2 +da (k)
w—1 a* ¥ w—1 2 p*
= 1 ca(k)e"1e™3 _ 1 ca(k)e®2e”3
a31_—52% a32_—52 (k)

K=o (71472 +d3(k))2’ 2o (71 +e"2 +d3 (k)2

1 wl c;;(k)ezg
az3 = w kg() e:v{_"_ex; +d3(k) .
By now we have proved that ) satisfies all the requirements in LemmaZ2.1. Hence,
(3.2) has at least one w-periodic solution. Therefore, (1.2) has at least one

positive periodic solution. This completes the proof.

Remark 3.1. By using the method of coincidence degree, we can also obtain
the existence positive periodic solution of the continuous system (1.1).

Theorem 3.2. In addition to the assumptions made in Theorem 3.1, assume
further that
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. k)ef1etls k)eflieHa
@) m(=bi(k) + e Scfieln;l(k))z) e (esi2j6)32+d2(k})2
ea(k)et
+7LQMW) < -—(F

(k)e™2e™3 ) (k)eH26H5
n2(=bolk) + e o) Y M e L

ca(k)ef2ef!s .
+na (€51 +e52 +d3 (k)2 < —0;

.. . Eef1eH3
(i) —by(k) + r*—fw < 0;
ca(k) HygHs
—by (k) + ﬁgm < 0.
Then, the positive periodic solution of (1.2) is globally stable.

Proof.  Let {(z*(k),y*(k), z*(k))T} be a positive periodic solution of (1.2),
we prove below that it is uniformly asymptotically stable. To this end, we
introduce the change of variables ui (k) = z(k) — z*(k), ua2(k) = y(k) — y*(k),
ug(k) = z(k) — 2*(k). System (1.2) is then transformed into

wlk+1) = explar(k) — by (k)" (k) - sl (L~ bu(k)a” (k)
cy(k)z* (k)z*(k) ey (k)z* (k)z" (k)
+(L*(k>+ky> (A():dl(k o ua (k) + oyt ra goe 2 (k)
- C
‘—‘L”‘—Lz*(k)iy oty vs(k) + filk, u(k))]
*(k ca(k)2" (k) co{k)y* (k)z" (k
uz(k + 1) =explaz(k) — ba(k)y* (k) — z{éf)%-%?k%})dz(k)}[(z*(k%ng*((k))ﬁ-d(z(?v))zul(k)
1= ballyy (k) + Gy Ot ua(k)
“x*(kgi(y)(y )(+)d;(k) uz(k) + f2(k, u(k))],
_ ca (k)= (k) ca(k)=" (k)
ualk+ 1) = explas(k) — =t ram ey e ()

ca{k)z* %k ca{k)z" (k .
+ ey vz (k) + (1 = e e s (k)

+fa(k, u(k))].

(3.27)
where LLNKTM converges uniformly with respect to k € N to zero as [ju| — 0.
In view of system (1.2), it follows from (3.27) that

wi(k+1) = 2 (k+ D1 — by (k)z* (k) + wiz&’iﬁj el

k)z* (k) c1( filk, k)
+(z*(k)CIL) idl(i 2“;(’{“) O <k)>+d1<k)“3(’”> + x*% Js
ug(k+1) = y*(k + Diz (k§1(, {k)&d)ﬁ(,@) zal(k> + (1 = bao{k)y™ (k)
ety e yalh) el oy el
ARERREE (z)tk) Bty (k>+dz<?>)23 v (k) 0
sk +1) = 2"k + Dl mrampn (B) + ermsy- @ am m(k)
+(1 _ cz(k)z" )vg(k) + Falk,u(k ))]
(k) ry (k)T ds (k) 2 () (k) o
(3.28)
Let us define the function V by
, u1(k) u( ) us(k)
V{u(k)) = n; +n + ) l,
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where n; (j = 1,2, 3) are positive constants given in (i). Calculating the defer-
ence of V along the solution of system (1.2) and using (3.28), we obtain

ci1(k)x* (k)z" (k ui(k c1(k)z*(k
AV=ml(1 - b () + el it 0 + e g (k)

(k) (k 2% (k)
T A s (k) + LI 4| e e e (k)

* calk k)z" (k u
+(1 = ba(k)y" (k) + e ((k))+d(2&))2)y2§k>

_ c gk} fa(ku(k)) cz(k)z"(k
*(k)+y:kk)+d2(k)u3(k) R () |+"3|(§* k)j—z(/ (k)g—ga(k))zul(k)

f ca(k)s Fa(ku(k))
+eEmac e + (1 - manrmm) 2 + e
ul k) ug(k

] = nal 2R — sl 2203 -

(3.29)
Form the proof of Theorem 3.1, we can get z*(k) < et y*(k) < ez, 2*(k) <
efs and z* (k) > 51, y* (k) > €52, 2* (k) > 2.
Therefore,
(k) HipHs (k eff1efls
AV —<— {nl( o (5) + (gsi1+6562+d61(k))2) + nz((e C12—‘r-e)2-‘—(12(]6)132)
ca(k)e1e'3 k 2¢H3
+n3((esl3-}(—e?3'2+d lSk))z)Hui(,]zgl + {n2( (k) + (Té%’)?)
ci(k)eflle ca(k)efzef )}lug(k)l

1 (e ) + (e

+n1|f1$,ztk)k))‘ +n2|f2(k u(k))l + 3 |f3(k ulk ))l

for large k. Since %ﬂ converges uniformly with respect to £ € N to zero as

||| — 0. It follows from Conditions (i} that there is a positive constant o such
that if k is sufficiently large and || u(k) ||< o, then

Ay < U@ |
=77 2

By [11], we see that the trivial solution of equation (3.28) is uniformly asymp-
totically stable, and so is the solution (z*(k),y*(k),2*(k)) of equation (1.2).
Note that the positive solution (z(k),y(k), z(k)) is chosen in an arbitrary way.
We conclude that the positive periodic solution (z*(k),y*(k), 2*(k)) of (1.2) is
globally stable. This completes the proof.

Remark 3.2. There are still many interesting and challenging mathematical
question need to be studied for system (1.2). For example, we do not discuss the
bifurcations that occur when conditions of stability are violated, we will leave
this for future work.
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