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GENERALIZED ‘USEFUL’ INFORMATION GENERATING
FUNCTIONS

D.S.HOODA* AND D.K.SHARMA

ABSTRACT. In the present paper, one new generalized ‘useful’ information
generating function and two new relative ‘useful’ information generating
functions have been defined with their particular and limiting cases. It
is interesting to note that differentiations of these information generating
functions at t=0 or t=1 give some known and unknown generalized mea-
sures of useful information and ‘useful’ relative information. The informa-
tion generating functions facilitates to compute various measures and that
has been illustrated by applying these information generating functions for
Uniform, Geometric and Exponential probability distributions.
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1. Introduction

The moment generating function of a probability distribution is a convenient
mean of calculating the moments of the distribution and an effective embodi-
ment of properties of the distribution for various analytical processes.The suc-
cessive derivatives of the moment generating function at point 0 gives successive
moments of a probability distribution. In the same way by differentiating in-
formation generating function at point 0 or 1, we can derive the measures of
information which are otherwise difficult to characterize and compute .

The concept of information generating function of a probability distribution
was defined by Golomb [4] for Shannon’s [14] entropy as given below:

Ity ==Y pht>1, (1)
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where {p;} is a complete probability distribution with ¢ € N, N is a discrete
sample space and t is a real or complex variable. Further it may be noted that

dI(t)
ot

lim= H(P) =~ pilogpi, (2)
iEN

where H (P) is well-known Shannon’s entropy , p; is probability of occurrence
the event E; for each i € N.

Later on Guiasu and Reischer [5] introduced the relative information generat-
ing function whose derivatives give well known statistical indices as the Kullback-
Leibler divergence between two probability distributions and Watanabe's mea-
sure of interdependence. It contains Golomb’s information generating function
as a particular case and includes both binomial and Poisson distributions which
were not covered in Golomb’s work.

Hooda and Singh {9] defined an information improvement generating function
whose derivatives at point 1 gives Theil’s [16] measure of information improve-
ment which has wide applications in Economics. It contains Guiasu and Reis-
cher’s [5] relative information generating function and Golomb’s [4] information
generating function as particular cases.

The quantity (2) measures average information, but does not take into account
the qualitative information of the events. Belis and Guiasu [2] introduced a
quantitative -qualitative measure of information

H(P;U) ==} uipilogpi, ¥
iEN

where u; > 0 is the utility attached to the i*” event which occur with probability
p;. The measure (3) was called useful information by Longo [11].

Later on Bhaker and Hooda [3] gave mean value characterization of the fol-
lowing ‘useful’ information measures:

H(P;U) = -Z Uipz'lo.qpi/z uiP; (4)
i€N ieN
and
1 1
Ho(PyU) = 1— aiogz wp§ /Z UiPi- (5)
1eEN 1eEN

Hooda and Bhaker (7] defined the following ‘useful’ information generating func-
tion:

I(P; Uty ==Y pi/> wips, (6)
iEN €N

where P = (p1,p2, -+ ,Dn) and U = (uy,uz, - -+ ,u,) are respectively probability
and utility distributions and t is a real or complex variable.
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Since 0 < p; < 1Vi and < u; > is bounded for an experiment, moreover,
(4) being positive term series is absolutely convergent V ¢ > 1 and also it con-
verges uniformly, therefore each term of the series possesses continuous deriva-
tive. Thus, the derivative of (4) w.r.t t at t =1 is possible and given by

d
S (P U) = 1= =) _wipidogps/ Y uips = H(P;U), (7)
iEN ieEN
which is (4) and in case the utilities are ignored or u; = 1 for each i, (4) reduces
to (1).

2. Generalized ‘Useful’ information generating function

Suppose

P ={(p1,p2, -+ ,pn) 0<p; <1, Zpi =1}
i=1
be a discrete probability distribution of a set of events F = {F1, Fa,--- ,E,} ofa
discrete infinite sample space N on the basis of an experiment having utility dis-
tribution U = {(u1, U2, - -+, un) u; > 0,Vi}, where N is a discrete sample space.
Following Hardy, Littlewood, and Polya [6], we have the following weighted mean
of order o — 1 of p; and u; with weights (u;p;)%

1

" a—1
Zu’gl otBi— 1/2(%@)&] , a>0,a#l and §;>1
=1 (8)
for which we have the generalized ‘useful’ information generating function given
by

My, (P;U) =

—t

n a—1
Lo g, (P;U,t) = [Ma,,(P; U)] [Z u phi /Z(uip»ﬂi} :
=1

9)
where t is a real or complex variable. On differentiating (9) w.r.t. tatt =0
respectively, we have

HE(P;U) = (1= ) log [Zuﬂ' e /i<uipi>ﬁi}, (10)

which is the generalized ‘useful’ information measure of order o and type {8;}.
When 3; = 3 for each i, (10) reduces to

HY(P;U) = (1—0a) 'log [Z Ufp?w”/Z(uipi)ﬂ} , (11)

which is the generalized ‘useful’ information measure of order a and type
characterized by Hooda and Singh [9].

Particular Cases
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(i) If utilities in (11) are ignored i.e. u; = 1 for each i, it reduces to Aczel and
Daroczy’s [1] generalized entropy order a and type 3.

(ii) Further if we set § = 1,we get Renyi’s [13] entropy of order o and Shan-
non’s {14] entropy when o — 1.

(iii) When 8 = 1, (11) reduces to (5) and further, it reduces to (4) in case
a - 1.

Examples. Next we consider information generating functions for uniform,
geometric and exponential distributions as particular examples and derive the
‘useful’ information measures.

1 1 1 .
(a) For the uniform probability distribution (N, N ’F) and uniform
utility distribution (u,u, - - ,u), we have I, g(P;U,t) = N*
and
6 .
gzla,g(f s ULE) |p=0 = logN, (12)

which is the same if utilities are ignored i.e. in case of uniform distributions
utilities play no role in evaluation of the generalized ‘useful’ information measure.
Moreover, (12) is independent of o and 3. Renyi’s entropy of any order and
Shannon’s entropy will have the same value.

(b)Consider the geometric distribution (g, gp, gp?, - - - ), p+q = 1 and geomet-
ric utility distribution (v,vu,vu?,---). It is the most general case when utility
also follows geometric distribution. Then we have

t
Lo p(P;U,t) = [¢* (1 - wPpP) /(1 —ubtop*tP~ 1] 1 — (13)

Lo (P3U,) leo= (1 = @) log [~ (1 = w’p) /(1 — up* =)
) (14)

In case utilities are ignored in (13) and (14), we get the result due to Mathur
and Kashyap [12].

1 .
(c) For the exponential probability distribution with mean X and exponential

utility distribution with mean — we consider
7

p(z) = Xe™* A > 0,0 < 7 < ooand uly) = pe™™, 4> 0,0 <y < o0
and have
i

Ls(PUty = [N18/(a+B-1)]1 -, a#l, 21,0 >0 (15)
and
8

o laa(P3U,) o= (1 - @) log \*28/(@+ 5= 1)) (16)
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It may be noted that (16) comes out to be independent of utility distribution
whatever form it may. Setting 3 =1 in (15) and (16), we get results for Renyi’s
entropy and further letting o — 1, we get results for Shannon’s entropy.

3. Two generalized ‘Useful’ relative information functions.

Suppose

i3
P={(p1,p2,-++pn) ,0<pi <1, Y pi=1}
i=1
be a discrete probability distribution whose predicted probability distribution is

Q = {(QIaQ27"‘ ,Qn), 0< qi S 17 ZQ1 = ]-}
i=1
and U = {(u1,u2, - ,un),0 < u;, V4, } is utility distribution of a discrete sample

space N. Let us consider the measure of ‘useful’ relative information characterized
by Bhaker and Hooda [3]:

> uipilog(pi/q:)

H(P/Q;U) = E1— (17)
Z UiPs
i=1
Next we define
I(P/Q;U,t) = 2 (P/90) (18)
Differentiating (18) w.r.t. t at t=0, we have
P };luipilog(pz‘/%)
'é’iLx,,@(P§ U, t) |imo= = = H(P/Q;U) (19)
Zuipi
i=1

which is (17). Following Hardy, Littlewood, and Polya [6], we have the following
weighted mean of order o — 1 of p;, ¢; and u; with weights (u;p;)?i :

1

L a—1
Zu Pipethiml _O‘/Z(uipi)ﬁi} , a>0,0#1
i=1

(20)

My 5, (P/Q;U) =

and 8;>1 for which we have generalized ‘useful’ relative information generating
function given below:

t

a—1

Lo, (P/U§t) = [Ma,,@i (P/Q§ U)]t = I:Z Uzﬂ' joathi= a/z uzpz :| (21)
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where ¢ is a real or complex variable. Differentiating (21) w.r.t. t at t = 0, we
have

k13 n
HGH(P/Q;U) = (a~1)"Hog [Z uf ptthiTlgtme/ Z(Uipi)ﬁi] :
i=1 i=1 22)
The measure (22) is called the generalized ‘useful’ relative information measure

of order a and type §;. when 3; = 3 for each i, (21) and (22) respectively reduce
to the following:

t
7 k(3 - 1
I p(PU;t) = (Mo g(P/Q; U)]t = {E u@‘ﬁpia+6*1<}il_a/2(uim)ﬁ} “ (22)))
=1 =1
and
HY(P/Q:U) = (a—1)""log {iuiﬁpiaw—l(}il—a/i (uipi)B:‘
i=1 i=1 (24)

which is a new generalized ‘useful’ relative information measure of order a and
type 5.

Particular Cases
(i) If utilities are ignored or u; = 1 for each i in (23), we have

t
- atf-1,1-a o
Lap(P/Qit) = | > piet* g /> g : (25)
gzzl P
Further, on differentiating (25) w.r.t. t at t = 0, we have
HE(P/Q) = (a— 1) log {Z pw-qu"a/pr] (26)
i=1 i=1

which is the generalized measure of relative information characterized and stud-
ied by Sharma [15].
(ii) If we set 8 =1 in (25), we get

t
< a, l—a a—1
L(P/Q;t) = | > pi®as : (27)
i1
which is generalized relative information generating function of order . Further,

if o« — 1in (27), it reduces to

I(P/Q;1) = 2¢ im Plos(re/a) (28)
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On differentiation (28) at t= 0, we get Kullback- Liebler’s [10] measure of relative
information given by

P/Q) szlOg pz/Qz (29)

(iii)In case 3 = 1, (23) reduces to
t

1(P/U;t) = [Mo(P/Q; U)]* = [Z uipiaQil-a/Z(uipi):I * ) (50)

(30) is the generalized ‘useful’ relative information generating function of order
«a and on differentiation at t = 0 it gives

Ho(P/Q;U) = (a—1)"!og [Z uipi“qil'“/Z(uipi)} , (31)
i=1 i=1

which is the generalized measure of ‘useful’ relative information characterized
by Bhaker and Hooda [3]. When o — 1 (31) reduces to (17). Following Hardy,
Littlewood, and Polya [6], we can also have another weighted mean of order a—1
of p;, ¢;, and u;, as given below:

1

. _
Z uiﬁipiaﬂiqilfa l—«
Mop, (P/Q;U) = | = , a#l, >1,a>0
> (usps)Pe (32)
=1

for which we have generalized ‘useful’ relative information generating function
given below

i
n
Bi ﬁzl a—1
Zui N 1 “

Iaﬁi (P/Q, U, t) = [Maﬁi(P/Q; U)]—t _ Z—:l—n——— 7
;(Uipi)ﬁi (33)

where t is a real or complex variable. Differentiating (33) w.r.t t at t = 0, we
have

5 Zuﬂl aﬁz 1 a
57106, (P/Q;U) li=0= (@ —1)""log i——— = H{(P/Q;U)
> (wipy)®s (34)

i=1
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(34) is a new measure and is called as the generalized useful relative measure of
order o and type 3;. when 3; = 8 for each 1,{34) reduce to

t
iu,ﬁpqﬂq.l_a a - 1
Los(P/Q;Ut) = | = (35)
Z:l(‘uipz:)ﬁ

and on differentiation w.r.t. t at t = 1 it gives

iufmaﬁ g "
HE(P/Q;U) = (a — 1) Mlog = (36)
> (uips)?

g=1

which is also a new measure and can be called the generalized measure of ‘useful’
relative information of order & and 8.

Particular Cases
(i) If utilities are ignored or u; = 1 for each i in (35), we have

(4
f:piaﬁ(hl_a a-1
L s(P/Qit) = | = 5—— (37)
szﬂ
=1
Further, on differentiating (37) w.r.t. t at t=0, we get
P ;piaﬁih'l_a
—a-tfa,ﬁ(P/Q; t) le=o= (a — 1)~ Hlog 2“—;’? = HE(P/Q)
> () (38)
G==1
(ii) If we set B =1 in (37), we get
t
" a—1
L(P/Q;t) = [Zpﬂqf—a} , (39)
fu=l

which is generalized relative information generating function of order a.
Further, if o — 1 in (39), it reduces to the following information generating
function for complete discrete Probability distribution P and Q:

ty " pilog(pi/a:)
I(P/Q;t) =2 = ; (40)
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On differentiation (40) at t= 0, again we get Kullback- Lieblers [10] measure of
relative information given by

H(P/Q) = pilog(pi/a), (41)
i=1
(iii) In case 8 =1, (35) reduces to
t
iuz‘pia(hl*a a-1
Ia(P/Q7 Ua t) = = ’ (42)

:Zl(uipi)

which is the useful relative information generating function of order a On dif-
ferentiation (42) gives

P iuipia%ka
571a(PQ3U) li=o= (e = 1) og | S| = Ha(P/Q: V)
;(Uipi) (43)

which is the generalized relative information characterized by Bhaker and Hooda

[3]. Further, if @ — 1, (43) becomes H(P/Q;U) = Zi:gépi?g(p;/qz'), which
i=1\UiDPi
is (17).

4. Applications

In this section we study the application of new generalized ‘useful’ relative
information generating function in deriving the ‘useful’ information generating
functions for Uniform and FExponential distribution and corresponding ‘useful’
relative information measures are also derived from these.

11 1
Examplel. For the uniform probability distribution(N, N N) after ex-
1 1 1
periment, predicted probability distribution (M’ o ’M) before experi-
ment and the utility distribution (u, u, - - - , u) of an experiment, also fixing 3 =1
after putting in (23) we have
M i
a(PiU) = () (44)

and

0 M

G 1o (P5U.) o=tog (57 ) (45)

which is the same result as if utilities are ignored. Thus in case of uniform prob-
ability distribution, utilities play no role in the generalized measure of ‘useful’
relative information.
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Example 2. For the actual and predicted exponential density distributions
with mean 1/X and 1/p respectively and utility distribution with mean 1/,
p(z) =X XA >0,0< 2 < ooand q(y) = pe ™, n>0,0<y < coand
w(z) =ve "%, v > 0,0 < z < oo On substituting these in (35) and integrating
with #=1and a — 1, we get

t

L((p(x), a(y); u(2), 1)) = [N~ pl=o(1 = a)a] @ — 1 (46)

and

2 La(p(a), 4w 1(2), 1) lewo= (@ — 1) log [\*4=/(1 - a)al]
(47)

which is a generalized measure of useful information of order o given by {43).
Further, when o — 1, in (46) and (47), we get the results obtained by Hooda
and Bhakar [7].

Similarly, if we consider the actual and predicted Gamma probability distri-
bution with mean p/a and p/y respectively and utility distribution with mean

p/7, we have
p(m):gf:f‘:;?:%:;0<m<oo,a>0,
q(y)=’:—el:§f€§’t;0<y<oo,u>o,
u(z):l—e—r(—p)z——; 0<z<oo,v>0.

On substituting these in (35) and integrating with 3 =1 and a — 1, we get
the result obtained by Hooda and Bhakar [8].
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