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thereto, as follows: 1) ray effect in discrete ordinates method, 1i) diffusion synthetic acceleration in strongly heterogeneous
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Carlo, v) depletion in Monte Carlo, vi) nuclear data evaluation, and vii) uncertainty estimation, including covariance data.
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1. INTRODUCTION

As more applications are required of the radiations (e.g.,
neutrons and photons), be it a nuclear reactor, shielding
facility, or a radiation treatment apparatus, the demands
on the capability and accuracy of design and analysis are
increasing ever to a very high degree. One (perhaps the
ultimate) task in designing such a nuclear system is to
deterrnine the distribution of the neutrons (and/or photons)
in the system under design accurately. For that, we have
to take into account the motion of the neutrons and their
interactions with the host nuclei of various kinds. Thus,
we need a mathematical model or theory to describe this
particle transport phenomena.

As a high-level model that describes the distribution
of neutrons in a medium such as a reactor, we usually
consider the following Boltzmann transport equation :
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with appropriate initial and boundary conditions provided.
In Eq.(1.1), the angular neuvtron flux ¢ is defined as
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where
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and the angular neutron density # has the following meaning :

n(r, B, 2.1) dr dE d2 =
expected number of neutrons in dr, dE, dQ

around the phase space point r, £, Qattimet. (] 1b)

Other notations are standard, except that the lower
case ¢ stands for macroscopic cross sections.

In writing down Eq.(1.1), we have assumed that 1) the
medium is isotropic (e.g., the medium exhibits no
polarization to neutrons), ii) the fission neutrons are
emitted isotropically, and iii) all fission neutrons are
emitted promptly (this can be relaxed by considering that
some neutrons are delayed). It is also based on the
assumption that the neutron is a point particle that is
described classically by its position and velocity. The
cross sections (the degrees of various reactions) are given
by experimental data or by theoretical calculations, if
experimental data are not available, with the help of
quantum mechanics. The problem of finding solutions to
Eq.(1.1) is nontrivial or defies elementary approaches of
analytical methods, but requires sophisticated numerical
methods. This is due to i) the complicated energy and
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space-dependency of the cross sections, ii) the angular
dependency of the scattering cross section 0,(Q"-Q), and
iii) complexity due to the Q-V¢ term, particularly in
curvilinear coordinates.

It is customary to first represent the differential
scattering cross section in Legendre components:
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In the case of time-independent or steady-state situation,
Eq.(1.1) becomes
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The transport equation (1.3) is of continuous form in
independent variables. Except for extremely simple cases,
it is not feasible to find exact solutions for them. We need
to call for a variety of methods by which the governing
equations are discretized and solved numerically. The
first discretization we consider is the energy variable ;
called multigroup approximation, that is common to
virtually all deterministic methods.

The discretization of the energy variable in the transport
equation may proceed from Eq.(1.3). Following the well-
studied procedure [1-3], we can obtain an approximation
to the transport equation in terms of the group angular
flux defined by

o, (r,2)= L dEp(r.E,2), g=1,2,-,G, (14)

as follows:
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Being renewed interest in their capability, stochastic
methods such as the Monte Carlo method can treat

continuous energy variable, thus avoiding the complexities
incurring from the multigroup approximation, €.g., resonance
absorption and self-shielding. In addition, the continuous
treatment of the space and angle also avoids approximations
due to discretizations in these variables. The Monte Carlo
methods solve, in effect, Eq.(1.3) by simulating events of
particle histories represented by each term.

The coefficients appearing in Eqs.(1.3) and (1.5) are
nuclear data and cross sections, whose accuracy affects
of course the accuracies of the solutions of the respective
equations. As the computational methods and numerical
algorithms in the computer codes advance and the
computing power increases, the computational errors
continue to diminish (of course if the computer codes are
used correctly) and the effect of uncertainty in the nuclear
data becomes more conspicuous.

This review articie provides discussion on select
unresolved (to the views of the authors) problems in the
computation of the transport equations. The topics chosen
are obviously limited, neither comprehensive nor
exhaustive. They reflect the authors’ limited experience,
interests and taste.

The article is organized as follows. Section 2.1 and
Section 2.2 provide the ray effect and the diffusion synthetic
acceleration, respectively, in the discrete ordinates method
which is most popular and widely used among deterministic
transport methods. Section 2.3 discusses the method of
characteristics and its applicability to three-dimensional
problems. Section 2.4 provides discussion on the Monte
Carlo method in two areas : i) convergence in k-
eigenvalue problems, and ii) spectrum effect in Monte
Carlo depletion. Section 3 discusses the processes involved
in the nuclear data evaluation and associated issues. Finally,
Section 4 provides a summary.

2. SOLUTIONS OF TRANSPORT EQUATION

2.1 Ray Effect in Discrete Ordinates Method

In discrete ordinates (Sy) method, the angular flux in
Eq. (1.3) is evaluated only in a finite number (say, M) of
discrete angles and the scattering source term in the right
hand side of Eq.(1.3), i.e., Eq.(1.6) is approximated by
the following quadrature :

M
Br(r) =2 w Y, (2,)9,(r.2,), @2.1)
=]

rendering scattering source iteration (SI). This solution
procedure allows “sweep” operation, which is a very nice
feature of the discrete ordinates method. However, this
method can exhibit two drawbacks depending on the
problem situations. First, the source iteration becomes
extremely slow if the problem medium is scattering-
dominant, i.e., if the scattering ratio {(0,/0) is close to unity.
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In such a case, the source iteration requires a good
acceleration scheme, which is the subject in the next
section. Second, if the problem is multi-dimensional and
absorption-dominant with isolated source, the scalar flux
calculated by Eq.(2.1) shows unphysical spatial distortions,
L.e., anomalous bumps, even for a quite large number of
discrete ordinates M. Simply increasing M is not cost-
effective. There have been several approaches in the past
to remedy this ray effect, such as the use of piece-wise
continuous polynomials [4] or spherical harmonics [5]
for the angular variable, the introduction of Legendre
function-represented fictitious source term [6], and the
use of region-dependent angular quadrature [7]. They all
show only a varying degree of success in mitigating the
ray effect. An interesting approach to mitigate the ray
effect significantly with an easy implementation is to use
the ideas in the streaming rays method [8,9], where the
angular flux ¢, is decomposed into uncollided ¢, and
collided ¢, components as

P, =0, + ¢, 22
resulting in, for example for cell (i, /), u.>0, 7>0,
2,9, +0,8.,;=9, 23)
Pty = Prsaings Povorn =i (230)
and
RN O P T G 24
Priing = Prijerrz =0, (24a)

in two-dimensional problem representation.

Eq.(2.3) can be integrated analytically along the
streaming rays. We can solve this without source iteration,
thus we may use very high quadratures, mitigating the
ray cffect. Eq.(2.4) is solved using an usual discrete
ordinates method.

2.2 Diffusion Synthetic Acceleration

The within-group transport equation either in the
discrete ordinates method or in the method of characteristics
is solved by iterative methods. A simple iterative method
is scattering source iteration (SI) that can be symbolically
written as

Q-Vo"' (r, Q)+ o(rg" (r.) = o (r)¢ (r)+ g(r, 2),
2.5)
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¢ ()= [d2" (r,Q), 2.6)

where / is an iteration index.

For problems in which neutrons undergo few collisions
or for problems that are “leaky”, the SI method converges
rapidly. However, for problems that contain diffusive
regions that are optically thick and scaitering-dominated
(e=0,/0—1), the SI method converges very slowly. To
accelerate the convergence, various acceleration methods
are used in the following structure :

QY (1, D)+ 5(r)p" (1, Q) = o (1) (P + q(r, Q),
Q7

@”H(f) = H{g""*(r, D). (2.8

Eq.{(2.7) is called high-order equation, which is the
original transport equation for which solution is sought.
The solution ¢ is usually obtained by transport sweep.
Eq.(2.8) is called acceleration or low-order equation, which
is simpler than high-order equation. The solution ¢ ' is
then substituted in the right-hand side of Eq.(2.7) and the
process continues until ¢ "' converges. For details, see a
recent review paper by Adams & Larsen [10].

The most widely used acceleration method is
diffusion synthetic acceleration (DSA) and based on the
diffusion type operation for H. In continuous form, they
are given as follows :

Transport sweep (High-order equation) :

2.V (1, )+ o(Ne™(r, Q)= o (1 (r)+ q(r, Q),
2.7
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DSA equation (Low-order equation) -
vty (r+o,(F* (ry=o,(N¢""* (-],
3o(r)
(2.10)
where
o (r)y=o(r)-o,(r),
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Thus, ¢ (r) is updated by
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¢ ()= 1)+ F(r). Q.11

The discretization in Eq. (2.10) must be “consistent”
with that in Eq. (2.7) for unconditional stability (convergence
of solutions for all mesh sizes, including optically thick
meshes). The spatially differenced diffusion equation
must be derived directly from the spatially differenced Sy
equation. The consistent derivation of such diffusion
difference schemes is algebraically complicated in
multidimensional geometries and non-diamond difference
schemes and potentially difficult to solve.

Moreover, recent studies [11,12] show that the
computation efficiency of Sy calculations with DSA methods
lose their effectiveness when the problem contains strong
discontinuities in the material properties. There is an
indication and evidence that the reason for this is due to
the DSA’s intrinsic limitation in strongly transport problems
which call for direction-dependent low-order equation
such as the coarse-mesh angular dependent rebalance
method (CMADR) [13]. But when used to precondition a
Krylov subspace method, as opposed to accelerating some
iteration, a DSA method can be applied efficiently even if
the discretization is not fully consistent [14].

2.3 Method of Characteristics

The method of characteristics (MOC) [15-17] is similar
to the discrete ordinates method in that it considers only
a finite number of discrete directions (usually with product
quadrature sets) and calculates mesh-average angular
flux by sweeping. The key difference is in the way of
calculating the mesh-average flux.

In MOC, for a given ordinate (direction of neutron
travel traced), each of several rays parallel to the ordinate
(that encompass the mesh) is traced to provide mesh-
average ray angular flux and outgoing mesh-edge ray
angular flux by analytic integration. These mesh-average
ray angular fluxes are then summed for all the rays that
pass through the mesh to provide mesh-average angular
flux. The ray-wise integration allows flexibility of the
mesh shapes. The meshes can take any shape and mixture
of shapes as in Monte Carlo methods. This is in contrast
to the discrete ordinates method.

To provide key element of the method of characteristics,
let us start from the within-group transport equation with
the scattering term truncated after /= L from Eq.(1.5) with
the right hand side written as ¢, .(r) in a set of M discrete
directions or rays.

If we now assume that ¢,.(r) is constant in a
computational cell (flat source approximation), then we
have by analytic integration of the within-group transport
equation along the characteristic ray,

ot in 1 ising, qg n (1 oLy g /5i00,
e )

gog ad = wg,n,le (212)

g

where L, is the track length of the /’th ray for direction
@, in mesh (i, j), projected to the x-y plane in x-y-z (z-
uniform, infinite) geometry. The mesh-average angular
flux for the scattering source iteration is obtained by

in out

q,, sin@,
g Z (¢ Wgnf s

Gg A,j/ Gg lafj'th mesh

0,,= (2.13)

where §, is the spacing between adjacent rays for
direction Q, and A4; is the area of cell (i, j). To preserve
the area A4, the projected track length L, is renormalized
as follows :

,‘ 4;

n, nI »°
Z Z Ln Ié;zwn

(2.14)

where w% are the weights for azimuthal angles. Then
Egs.(2.12) and (2.13) and a general geometric tracking
module are complete for transport calculation with MOC.

The above computational procedure applies to the 2-
D x-y geometry problems (x-y-z problems where properties
are independent of z coordinate). Further, if the x-y
properties form certain periodic structures such as the
fuel pin cells in most of the reactor cores, modular ray
tracing is possible, saving computer memory requirements
and floating-point operations.

During the last several years, MOC has been revisited
and refined to apply to 2-D whole-core calculations
[18,19]. A direct extension of MOC to 3-D problems
may be possible, but it will take tremendous amount of
memory and long computer timme, and a practical method
is yet to be devised. A more modest approach is the
2D/1D fusion method {20-22], where MOC is used for
radial 2-D calculation, coupled with Sx-like method for
axial 1-D calculation. This approach takes advantage of
the structure of a core that is usually simpler in axial
direction than in radial direction. Similar works are some
hybrid methods [23,24].

2.4 Monte Carlo Methods
2.4.1 Convergence in ken-Eigenvalue Problems

Compared to the deterministic transport methods based
on multigroup approximation, the Monte Carlo method
has advantages due to its capability of treating continuous
energy and complex geometry. But it is still difficult to
apply to realistic eigenvalue problems. The difficulty
comes from the necessity of guessing fission source
distribution to start iteration (generation), superimposed
on statistical uncertainty in each iteration. Thus, it leads
to biased .y with variance not easily quantified [25-27].

Especially in loosely-coupled fissile systems, the
convergence of fission source distribution is not achieved
or slow at best, even under apparent convergence of k.
[28,29]. Wielandt acceleration has been proposed and
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tested [30,31], but the overall effectiveness (in terms of
convergence and computer time) is not definitive.
Preliminary results of the Monte Carlo anchoring method
[32,33], in which the fission source term is decomposed
into a conventional fission distribution and an “anchoring”
distribution updated by a deterministic method, indicate
that convergence of the fission source distribution is faster
and stabilized and that eigenvalue is obtained with faster
convergence and significantly reduced bias, if a proper
anchoring factor is chosen.

2.4.2 Monte Carlo Depletion

In conventional deterministic depletion codes, e.g.,
CASMO or HELIOS, a critical spectrum {or leakage
corrected spectrum) is used for the depletion of fuel and
burnable nuclides and the buildup of actinides and fission
products. The critical spectrum is obtained by a critical
buckling search such as the BI method.

In recent papers, due to the advantages of the Monte
Carlo method in its capability, the number of depletion
studies done by Mote Carlo codes is increasing. An
example of the most widely used code is MONTEBURNS
[34]. In some Monte Carlo depletion calculations [35,36],
the errors on the calculated results are obtained through
propagation of the errors in the input parameters such as
the cross sections. However, the current Monte Carlo
depletion codes do not use the critical spectrum [37]. A
recent study [38] introduced an approach to Monte Carlo
depletion with leakage corrected spectrum, in which the
streaming (leakage) term of the transport equation is treated
as an eigenvalue term and transformed into an extended
albedo boundary condition problem. This approach was
implemented in the MONTEBURNS code, modifying
the MCNP engine. Preliminary numerical results on a
representative PWR assembly problem showed considerable
differences in buildup and depletion of nuclides between
the leakage corrected case and the conventional case.

3. NUCLEAR DATA

Modern nuclear data evaluation is based on the nuclear
interaction model. However, no universal theory which is
based on the first principle has been found yet. So, practical
nuclear data evaluation is done by adjusting various model
parameters to reproduce the measured data well. The
model computer codes are usually developed for different
energy regions where the major interaction mechanisms
are different. For this situation, the covariance methods
based on Bayesian principle or Kalman filter is widely
used nowadays. After Gandini's successful work on GPT
(Generalized Perturbation Theory) for nuclear engineering
problems, various computer tools were developed for
application. Uncertainty estimation was also applied for
the pressure vessel life time estimation, the neutron
metrology where only partial reaction cross sections are
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important, and the fast reactor core analysis where
resonance region is relatively insignificant. However, the
recent trend of licensing demands the uncertainty prediction
before starting construction of a new nuclear facility. The
methodology development and the application of uncertainty
estimation become important with growing capacity of
computing power and with recent release of nuclear data
with covariance for most transport calculation.

3.1 Nuclear Data Evaluation

To find a solution of the neutron transport equation, it
is necessary to know the scattering and reaction cross
sections, neutron emission spectrum accompanying various
nuclear reactions such as fission, (n,2n), etc. The cross
section data is generally provided by a nuclear data
evaluation process which is based on the measurements
and the nuclear reaction theories. Since the nuclear
reaction is not well understood until now, the evaluation
process relies on the reaction model which is valid only
in some energy range and has some adjustable parameters.

When the incident neutrons energy is below few MeV
energy, the interaction is well described by the interaction
between a neutron and the potential well of a target
nuclide [39]. The interactions among nucleon become
important when the incident energy rises above few tens of
MeV. At the higher energy region, the nuclear interaction
models based on intra nucleon force are developed.
However, such high energy is less interesting for the energy
application problem.

For low energy region, the discrete nature of quantum
energy level allows us to use a formally accurate R-matrix
formalism. But R-matrix is not simple enough for practical
usage; a Reich-Moore resonance formula [40] or the Multi
Level Breit Wigner resonance formula is used for actual
nuclear data evaluation. The resonances are completely
described by the parameter sets of a level energy, a level
spin, an orbital angular momentum, resonance widths for
each reaction channel such as neutron width, radiative
width, fission width, alpha width, etc [41]. These resonance
parameters are derived by fitting the measured transmission
coefficient [42] or the measured reaction cross section
from the time of flight experiment.

For neutron energy of keV range, it become practically
impossible to distinguish indivdual resonances. A statistical
approach extended from the resolved resonance analysis
[43,44] is used to fit experimental data in unresolved
energy range. Spin dependent wave strengths are also
derived from the resolved resonance parameters and the
optical model calculation.

For high energy region where cross section becomes
smooth and inelastic scattering begins, an optical model
approach is used [45]. The neutron potential of a nuclide
is described by a Wood-Saxon well type potential. The
depth, radius, and boundary width are adjustable parameters
to describe the shape of complex potential well. The
quantum mechanical wave equation is directly solved to
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find the scattering and absorption cross sections. The
potential well shape are adjusted to reproduce the measured
total cross section and the absorption cross sections such
as the capture cross section, the inelastic scattering cross
sections, etc. The compound nuclide which is formed by
a neutron absorption decays with emission of various
particles. The compound nuclide decay is described by
Hauser-Feshbach model in which the level densities are
adjustable parameters. An optical model code such as
ABAREX [46] or ECIS [47] is used for this region.

For higher energy region above few MeV, the reaction
is not adequately described by the compound model and
various pre-equilibrium models[48] are developed to
describe the reaction particularly for the energy and angle
distribution of emitting particles [49].

Several comprehensive computer code systems such
as EMPIRE [50] and TALYS [51] which can handle
wide energy range by coupling the nuclear model codes
consistently were developed.

3.2 Uncertainty Estimation

Measurement of nuclear cross section accompanies
errors due to statistical nature of nuclear reaction or due
to systematic deviation introduced from non-ideal
experimental setup. We need to know the estimate from
the observed value.

For a multivariate system such as energy dependent
cross section, the uncertainty is represented as a matrix,
known as the covariance, whose off-diagonal element
does not vanish. For a simultacnously measured quantity,
i.e. using a time of flight and/or measuring relative value
against the well known standard cross section, the best
estimate of observables X can be defined as follows:

;:E[x]= ij(x)dx, (3.H

when we know the multi-variate probability density fuction
(PDF) P(x). The associated covariance C is defined as

C, = E[(x ~X)(x —E)’] = [x=x(x-%)"Px)dx. (32)

The PDF of error can be derived from the maximum
entropy principle [51]. In the most case of white noise,
the PDF follows the Gaussian error distribution:

P(xe(},}+dx))=\/—_21_”—Gex{_%(x;xJ }zx, (3.3)

The estimation of uncertainty due to model parameter
can be done when we know the PDF. When an observable

value can be expressed in a function of parameters as
R=f(p), we can determine the variance of R from the
variance of p as follows, using the Taylor expansion,

oR
R=""5p:
ap5p

Cy =E[SR'6R]=SC,S, (34)

where
OR.

= J

S-v EE
! op,

The sensitivity matrix can be obtained by perturbing
each parameter p;, by a perturbation theory calculation,
or by a random selection of a set of parameters p. When
the number of parameters is small and the linearity is
good, perturbation of each parameter is suitable. However,
when the number of parameters is large, one has to use
suitable perturbation theory which requires one forward
and several adjoint calculations. When the number of
parameters is large and nonlinear, a random variation in
the set of parameter is acceptable.

For the neutron transport problem which is linear in
flux, the well-known GPT [52, 53] can be used to derive
the sensitivity matrix. As an example, the sensitivity of
eigenvalue due to cross section uncertainty can be derived
easily. For a linear system with a given source S,

A(X)P(x) = S(x), (35)

an estimation of a response R, such as the reaction rate of
a dosimeter, is given as

(3.6)

R =Y (¢ =3 .4).

where 3, is reaction cross section of the dosimeter. Using
the GPT, a row of sensitivity matrix can be calculated as

[54]
R (d0).,  .[od &S
A | B <VEA ==+ — , 3.7
%p; J{apj P (6pj¢+6pjﬂﬁ e

where p; are the cross sections, or any other parameters,
used in the transport equation. The adjoint flux ¢ is defined
as a solution of the corresponding adjoint system:

A (x)=2 (%) (3.8)
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When there is no source which is a linear eigenvalue
problem, the neutron transport equation is written as

A()P(x) = AB(x)P(x) . (39

We can create the corresponding adjoint equation as

A(0)¢"(x) = M8 ()4 (x). (3.10)

For a multi-group problem, the adjoint matrix is a
transpose of the original martix 4 and B. Sensitivity on
the eigenvalue A can be expressed as [55-57]

« 0A OB
o Mg

RECR) @3.11)

op, |4 B

Similar method can be applied to estimate error in the
burnup calculation [58]. For the depletion calculation, the
variance associating the number density can be expressed
as the contributions from the variance from the initial
number density, the cross sections, and the calculated flux.

The uncertainty estimation can guide to select the
experiments from existing experimental database or to
construct a new experiment for the design and validation
of a new nuclear reactor system by defining a representative
factor [59].

3.3 Model Parameter Update

Model parameter update using the measured value is
necessary for the nuclear data evaluation where the
knowledge of intra-nucleus physics is not sufficient for the
first principle approach. Bayes has established a theoretical
background for parameter estimation problem using the
probability theory. The Bayes' theorem states that the
probability of observing A when B is observed is the same
as the probability of observing B after observing A,

P(4B)YP(B) = P(BJA)P(A). (3.12)

When we determine the PDF using the maximum
entropy principle or heuristically adopt the Gaussian
error distribution, we can obtain the following problem to
find p and R:

min. = {R«mms) - R)/Ca\mm\‘)" {R(Wﬂ” . R)+ (p(mm.\) _ p)‘ Cp“‘(p(mm.s') _ p)!

(3.13)

with the constraints R-R”=S'(p-p'”) where suffix (0)
stands for the calculated value. A solution can be found
using the Lagrangian multiplier method as follows:
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p(new) - p(()) + CPSVR%(R(MMU — R(()))’ (314)
and the associated covariance matrix
(new} {0 -lar t
C, =C, " +C, SV, S'C, (3.15)

where Vg =Cr™+ S'C,S.

Using the above expression, we can update the model
parameter reflecting the measured value successively
when we have the covariance matrices associating the
measured value. Quality and consistency of the updated
parameter can be expressed by a scalar quantity ¥* which
should be the same as the degree of freedom (or the
number of measured values):

v = (p( owt p(m}f Cp~1 (pf ew) _ pm)) " {R(mcus) _ R””}{S‘CPS)il{R(""’”"" _ R“}))
(3.16)

The Kalman filter [60] results in the same formula as
Bayesian approach for linear systems with the Gaussian
error distribution. For the cross section evaluation, the
method described above is widely used to determine the
nuclear physics parameters as well as the cross sections
[61]. Even when the Gaussian error distribution is not
suitable, a direct Monte-Carlo sampling method [62]
with the Bayesian principle can be applied.

3.4 Update of Prediction Using Measured Data

By applying the sensitivity equation, we can update
the calculated value as follows [63}:

R(mmf) - R{O) + S(CPSVR—l(R(mms) - R((H)’ (317)

and

CR{M'W) = SICP(O)S + S{CPSVRW)SJCP’S . (3.18)

Above formula are useful when we know the
covariance of parameters (e.g., cross sections and that of
the measured data).

3.5 Covariance Data Library

There is a long history of development and application
of the uncertainty estimation methodology. To estimate
the fluence of nuclear reactor pressure vessel which is
critical for life-time assessment of a nuclear power plant,
a standard method was already applied to the uncertainty
estimation including the experimental database [64].
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Dosimetry cross section libraries [65], which are required
to neutron metrology and pressure vessel surveillance,
are usually distributed with associated covariance
matrices. Recently, there are some published cross
section covariance data libraries suitable for transport
calculation such as the low fidelity BOLNA library [66].

4. SUMMARY

This article provided (at least partially) the major
outstanding problem areas in neutron transport computational
field, with some promising approaches to resolve them.
The outstanding or unresolved problems we considered
important and relevant to the design and analysis of nuclear
systems are 1) the ray effect in the discrete ordinates
method, ii) the diffusion synthetic acceleration in strongly
heterogeneous problems, iii) practical method to extend
the method of characteristics to 3-D problems, iv)
convergence in k.4-eigenvalue problem in the Monte Carlo
method, v) Monte Carlo depletion, and vi) nuclear data
evaluation requirement and uncertainty estimation, including
covariance information.

The problem areas in the list above are not of course
comprehensive and not necessarily in order of importance
of priority. As a key and core activity for the design of
nuclear systems involving radiations, the discipline of
computational transport will continue to play an important
role as it did in the past. The outstanding problems identified
above should serve as potential research and development
items of immediate future.

REFERENCES

[ 1] E.E. Lewis and W F. Miller, Jr., Computational Methods of
Neutron Transport, John Wiley & Sons, 1984.

[2] G.I Bell and S. Glasstone, Nuclear Reactor Theory, Van
Nostrand Reinhold, 1970.

[3] N.Z. Cho, “Fundamentals and Recent Developments of
Reactor Physics Methods,” Nuclear Engineering and
Technology, 37, 25 (2005).

[4]L.L. Briggs, W.F. Miller, and E.E. Lewis, “Ray Effect
Mitigation in Discrete Ordinate-Like Angular Finite Element
Approximations in Neutron Transport,” Nucl. Sci. Eng., 57,
205 (1975).

[ 5] R.N. Blonquist and E.E. Lewis, “Rigorous Treatment of
Transverse Buckling Effects in Two-Dimensional Neutron
Transport Computations,” Nucl. Sci. Eng., 73, 125 (1980).

[6] W.F. Miller, Jr. and W.H. Reed, “Ray Effect Mitigation
Methods for Two-Dimensional Neutron Transport Theory,”
Nucl. Sci. Eng., 62, 391 (1977).

[71H.S. Choi and J. K. Kim, “Development of Radiation
Shielding Analysis Program Using Discrete Elements Method
in X-Y Geometry,” Nuclear Engineering and Technology
(formerly J. of Korean Nuclear Society), 25, 51 (1993).

[ 8 ] W.E. Filippone, S.Woolf, and R. Lavigne, ‘“Particle Transport
Calculations with the Method of Streaming Rays.” Nucl.
Sci. Eng., 77, 119 (1981).

[9]1 S.G. Hong and N.Z. Cho, “Extensions of Streaming Rays

Method for Streaming Dominant Neutron Transport
Problems,” Nuclear Engineering and Technology (formerly
J. of Korean Nuclear Society), 28, 320 (1996).

[10] M.L. Adams and E.W. Larsen, “Fast Iterative Methods for
Discrete-Ordinates Particle Transport Calculations,” Progress
in Nuclear Energy, 40, 3 (2002).

[11]Y. Azmy, “Impossibility of Unconditional Stability and
Robustness of Diffusive Acceleration Schemes,” American
Nuclear Society Radiation Protection and Shielding Division
Topical Meeting, p. 480, Nashville, TN, U.S.A., April 19-
23, (1998).

[12] Y. Azmy, T. A. Wareing, and J. Morel, “Effect of Material
Heterogeneity on the Performance of DSA for Even-Parity
Sy Methods,” International Conference on Mathematics and
Computation, Reactor Physics, and Environmental Analysis
in Nuclear Applications, p.55, Madrid, Spain, September
27-30, (1999).

[13] Y.R. Park and N.Z. Cho, “Coarse-Mesh Angular Dependent
Rebalance Acceleration of the Method of Characteristics
in x-y Geometry,” Nucl. Sci. Eng., 158, 154 (2008).

[14] J.S. Warsa, T.A. Wareing, J.E. Morel, .M. McGhee, and
R.B. Lehoucq, “Krylov Subspace Iterations for the
Calculation of k-Eigenvalues with Sy Transport Codes,”
Int. Conf. Nuclear Mathematical and Computational Sciences
(M&C 2003), Gatlinburg, USA, April 6-11, 2003, CD-
ROM, American Nuclear Society (2003).

[15] J.R. Askew, “A Characteristics Formulation of the Neutron
Transport Equation in Complicated Geometries,” AEEW-
R-1108, U.K. Atomic Energy Authority (1972).

[16] ML.]. Halsall, “CACTUS, A Characteristics Solutions to the
Neutron Transport Equations in Complicated Geometries,”
AEEW-R-1291, UK. Atomic Energy Authority (1980).

[17] S.G. Hong and N.Z. Cho, “CRX: A Code for Rectangular
and Hexagonal Lattices Based on the Method of
Characteristics,” Ann. of Nucl. Energy, 25, 547 (1998).

[18] S. Kosaka and E. Saji, “The Characteristics Transport
Calculation for a Multi-Assembly System using Neutron
Path Linking Technique,” Proc. Int. Conf. Mathematics and
Computation, Reactor Physics and Environmental Analysis
in Nuclear Applications, p.1890, Madrid, Spain, September
27-30, (1999).

[19]G.S. Lee, N.Z. Cho, and S.G. Hong, “Acceleration and
Parallelization of the Method of Characteristics for Lattice
and Whole-Core Heterogeneous Calculations,” Proc.
PHYSOR 2000, Session II-C, Pittsburgh, USA, May 7-11,
(2000); see also N.Z. Cho, et al., “Whole-Core Heterogeneous
Transport Calculations and Their Comparison with Diffusion
Results,” Trans. Am. Nucl. Soc., 83, 292 (2000).

[20] N.Z. Cho, G.S. Lee, and C.J. Park, “A Fusion Technique
of 2-D/1-D Methods for Three-Dimensional Whole-Core
Transport Calculations,” Proc. of the Korean Nuclear
Society Spring Meeting, May 2002, Kwangju (Full Paper
in CD-ROM).

[21]N.Z. Cho, G.S. Lee, C.J. Park, “Fusion of Method of
Characteristics and Nodal Method for 3-D Whole-Core
Transport Calculation,” Trans. Am. Nucl. Soc., 86, 322 (2002).

[2] N.Z. Cho, et al., “Refinement of the 2-D/1-D Fusion Method
for 3-D Whole-Core Transport Calculation,” Trans. Am.
Nucl. Soc., 87, 417 (2002).

[23]1].Y. Cho, et al., “Three-Dimensional Heterogeneous Whole
Core Transport Calculation Employing Planar MOC
Solutions,” Trans. Am. Nucl. Soc., 87, 234 (2002).

388 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.4 MAY 2009 - SPECIAL ISSUE IN CELEBRATION OF THE 40TH ANNIVERSARY OF THE KOREAN NUCLEAR SOCIETY



[24]S. Kosaka and T. Takeda, “Diffusion-Like 3-D Heterogeneous
Core Calculation with 2-D Characteristics Transport
Correction by Non-Linear [teration Technique,” Int. Conf.
Nuclear Mathematical and Computational Sciences (M&C
2003), Gatlinburg, USA, April 6-11, 2003, CD-ROM,
American Nuclear Society (2003).

[25]E.M. Gelbard and A.G. Gu, “Biases in Monte Carlo
Eigenvalue Caleulations,” Nucl. Sci. Eng., 117, 1 (1994).

[26] T. Ueki, T. Mori, and M. Nakagawa, “Error Estimates and
Their Biases in Monte Carlo Eigenvalue Calculations,”
Nucl. Sci. Eng., 125, 1 (1997).

[271H.J. Shim and C.H. Kim, “Real Variance Estimation Using
Inter-Cycle Correlation of Fission Source Distribution in
Monte Carlo Eigenvalue Calculations,” Trans. Am. Nucl.
Soc., 94, 574 (2006).

[28] E.G. Whitesides, “A Difficulty in Computing the k-Effective
of the World,”” Trans. Am. Nucl. Sac., 14, 680 (1971).
[291B.T. Yamamoto, T. Nakamura, and Y. Miyoshi, “Fission
Source Convergence of Monte Carlo Criticality Caleulations
in Weakly Coupled Fissile Arrays,” J. Nucl. Sci. Technol.,

37, 41 (2000).

[307 F. Brown, “Wielandt Acceleration for MCNP5 Monte Carlo
Eigenvalue Caleulations,” Joint International Topical Meeting
on Mathematics & Computation and Supercomputing in
Nuclear Applications M&C + SNA 2007), Monterey,
California, April 15-19, 2007, (CD-ROM) (2007).

[31}H.J. Shim and C.H. Kim, “Real Variance Estimation in
Monte Carlo Wielandt Calculations,” PHYSOR’08
Proceedings of the International Conference on the Physics
of Reactors, Interlaken, Switzerland, September 14-19
(CD-ROM) (2008).

[32]S. Yun and N.Z. Cho, “Monte Carlo Anchoring Method
for Asymmetric Loosely-Coupled k-Eigenvalue Problems,”
Annual Meeting of AESJ (AESJ 2009), Tokyo, Japan,
March 23-25 (CD-ROM) (2009).

[33]S. Yun and N.Z. Cho, “Monte Carlo Anchoring Method
for Loosely-Coupled k-Eigenvalue Problems™, 2009
International Conference on Advances in Mathematics,
Computational Methods, and Reactor Physics (M&C 2009),
Saratoga Springs, New York, May 3-7 (CD-ROM) (2009).

[34] D.L. Poston and H.R. Trellue, User's Manual, Version 2.0
for MONTEBURNS Version 1.0, LA-UR-99-4999, Los
Alamos National Laboratory (1999).

[35] T. Takeda, N. Hirokawa, and T. Noda, “Error Propagation
in Monte Carlo Burnup Calculations,” Proc. Int. Conf.
Mathematics and Computation, Reactor Physics and
Environmental Analysis in Nuclear Applications, pp. 1036-
1044, Madrid, Spain, September 27-30 (1999).

[36]H.J. Shim and C.H. Kim, “Error Propagation Module
Implemented in the MC-CARD Monte Carlo Code,” Trans.
Am. Nucl. Soc., 86, 325 (2002).

[37] J.C. Davis and J.C. Lee, “Comparison of Monte Carlo and
Deterministic Depletion Codes for LWR Fuel Cycle,” Trans.
Am. Nucl. Soc., 92, 651 (2003).

[38] S. Yun and N.Z. Cho, “A Monte Carlo Depletion Method
with Leakage Corrected Critical Spectrum,” Trans. Korean
Nucl. Soc. Spring Meeting, Jeju, Korea, May 21-22 (2009).

[39] JM. Blatt and V.F. Weisskopf, “Theoretical Nuclear Physics,”
Spinger-Verlag (1979).

[40] C.W. Reich and M.S. Moore, “Multilevel Formula for the
Fission Process,” Phys. Review, Vol. 111, pp. 929 (1958).

[41] S.F. Mughabghab, “Atlas of Neutron Resonances,” Elsevier

CHO et at,, Some Outstanding Problems in Neutron Transport Computation

(2006).

[42] G.N. Kim et al., “Measurement of neutron total cross section
of Dy at Pohang Neutron Facility,” Annals of Nucl. Ener,,
Vol. 30, pp. 1123 (2003).

[43] S-Y. Oh, I. Chang, and S. Mughabghab, “Neutron Cross
Section Evaluations of Fission Products Below the Fast
Energy Region,” BNL-NCS-67469, BNL (April 2000).

[44] S-Y Oh, C-S Gil, and J. Chang, “Evaluation of Neutron
Cross Sections of Dy Isotopes in the Resonance Region,”
Nuclear Engineering and Technology, Vol. 33, pp. 46 (2001).

[451Y.D. Lee and J. Chang, “Neutron Cross Section Data
Library for Pd-105, Ag-109, Xe-131, and Cs-133,” Nucl.
Ener. and Tech. Vol. 37, pp. 101 (2005).

[46] R.D. Lawson, “ABAREX : A Neuntron Spherical Optical
Statistical Model Code,” Woskshop on Computation and
Analysis of Nuclear Data Relevant to Nuclear Energy and
Safety, pp. 447, Trieste, Italy.

[47] J. Raynal, “Notes on ECIS,” CEA-N-2772, CEA (1994).

[48] E. Gadioli and P.E. Hodgson, “Pre-Equilibrium Nuclear
Reactions,” Clarendon Press, (1992).

[49]1Y.D. Lee and Y.O. Lee, “Neutron induced cross section
data for Ir-191 and Ir-193,” Nucl. Ener. and Tech. Vol. 38,
pp. 803 (2006).

[50] M. Herman et al., “EMPIRE - Nuclear Reaction Model Code,”
BNL, (2005).

[51] A.J. Koning, S. Hilaire, and M.Duijvestin, “TALYS-1.0 A
nuclear reaction program,” NRG, the Netherland (2007).

[52] A. Gandini, “A generalized perturbation method for bi-
linear functionals of the real and adjoiny neutron fluxed,”
1. of Nucl. Ener. Vol. 21, pp.755 (1967).

[53] W. Stacey, “Variational Methods in Nuclear Physics,”
Academic Press, 1974,

[54] F.R. Andrade Lima, et al., “Recent advances in perturbative
methods applied to nuclear engineering problems,” Prog.
in Nucl. Ener. Vol. 33, pp. 23 (1997).

[55] F.H. Kim, et al.; “A generalized perturbation theory program
for CANDU core analysis,” Ann. of Nucl. Ener. Vol. 28,
pp. 169 (2001).

[56] K. Furuta, et al., “SUSD: A Computer Code for Cross
Section Sensitivity and Uncertainty Analysis Including
Secondary Neutron Energy and Angular Distributions,”
UTNL-R-0185, 1986.

[57] B.T. Rearden, “TSUNAMI-3D: Control module for three-
dimensional cross section sensitivity and uncertainty analysis
for criticality,” ORNL/TM-2005/39 Vol-1, Sect. C9, 2005.

[S8]N.G. Carica-Herranz, et al., “Propagation of statical and
nuclear data uncertainties in Monte Carlo burn-up calculations,”
Ann. of Nuc. Energy Vol. 35, pp.714 (2008).

[39] G. Aliberti et al., “Use of covariance data to select experiments
relevant to target systems,” Nucl. Data Sheets, Vol. 109,
pp. 2745 (2008).

[60] http://en.wikipedia.org/wiki/Kalman_filter - accessed on
2009.3.9.

[61] D. Smith, “Summary of the Workshop on Neutron Cross
Section Covariances,” Nucl. Data Sheets, Vol. 109, pp.
2915 (2008).

[62] D. Smith, “A Unified Monte Carlo Approach to Fast Neutron
Cross Section Data Evaluation,” Report ANL/NDM-166,
ANL, January (2008).

[63]G. Palmiotti, et al., “A global approach to the physics
validation of simulation codes,” Ann. of Nucl. Energy, Vol.
36, pp. 355 (2009).

NUCLEAR ENGINEERING AND TECHNOLOGY, YOLA4T NO.4 MAY 2009 - SPECIAL ISSUE IN CELEBRATION OF THE 40TH ANNIVERSARY OF THE KOREAN NUCLEAR SOCIETY 389



CHOetal.. Some Outstanding Problems in Neutron Transport Computation

{64] “Regulatory Guide 1.190 - Calculational and Dosimetry the Final Technical Meeting on International Reactor
Methods for Determining Pressure Vessel Neutron Fluence,” Dosimetry File: IRDF-2002,” INDC(NDS)-448 (2003).
USNRC (2001). [66]R.C. Little et al., “Low-fidelity Covariance Project,” Nucl.

[65] P. Griffin and R. Paviotti-Corcuera, “Summary Report of Data Sheets, Vol. 109, pp. 2828 (2008).

390 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.4 MAY 2009 - SPECIAL ISSUE IN CELEBRATION OF THE 40TH ANNIVERSARY OF THE KOREAN NUCLEAR SOCIETY



