Lane Violation Detection System Using Feature Tracking

특징점 추적을 이용한 끼어들기 위반차량 검지 시스템

  • 이희신 (전북대학교 컴퓨터공학과) ;
  • 이준환 (전북대학교 컴퓨터공학과)
  • Published : 2009.04.30

Abstract

In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

본 논문에서는 특징점 추적을 이용하여 끼어들기 위반차량을 검지할 수 있는 끼어들기 위반차량 검지 시스템을 제안한다. 제안된 끼어들기 위반차량 검지 시스템의 전체적인 알고리즘은 특징 추출, 추적대상 차량의 특징점 등록 및 추적, 끼어들기 위반차량 검지 등의 세 단계로 구성된다. 특징 추출 단계에서는 실시간 처리가 가능한 특징점 추출 알고리즘을 이용하여 입력 영상에서 특징점을 추출한다. 추출된 특징점들은 다시 추적대상 특징점을 선정하고 등록된 특징점을 정규화 된 교차 상관관계(normalized cross correlation:NCC)를 이용하여 추적한다. 마지막으로 추적된 특징점들의 정보를 이용하여 끼어들기 위반여부를 최종 검지한다. 제안한 시스템을 끼어들기 금지구간에서 취득한 영상을 사용하여 실험한 결과 정인식률 99.09%와 오류율 0.9%의 뛰어난 성능을 보였고 실시간처리가 가능한 초당 34.48프레임의 빠른 처리속도를 얻을 수 있었다.

Keywords

References

  1. S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos, "Detection and classification of vehicles," IEEE Trans. Intelligent Transportation System, vol. 3, no. 1, pp. 37-47, Mar. 2002. https://doi.org/10.1109/6979.994794
  2. D. Koller, K. Daniilidis, and H. Nagel, "Model-based object tracking in monocular image sequences of road traffic scenes," Int. J. Computer Vision, vol. 10, no. 3, pp. 257-281, June 1993. https://doi.org/10.1007/BF01539538
  3. B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, "A real-time computer vision system for vehicle tracking and traffic surveillance," Transportation Research Part C: Emerging Technologies, vol. 6, no. 4, pp. 271-288, Aug. 1998. https://doi.org/10.1016/S0968-090X(98)00019-9
  4. R. Polana and R. Nelson. "Low level recognition of human motion," Proc. IEEE Workshop Motion of Non-Rigid and Articulated Objects, pp. 77-82, Nov. 1994.
  5. T. J. Fan, G. Medioni, and R. Nevatia, "Recognizing 3-D objects using surface descriptions," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 11, pp. 1140-1157, Nov. 1989. https://doi.org/10.1109/34.42853
  6. C. Harris and M. Stephens, "A combined comer and edge detector," Proc. 4th Alvey Vision Conf., pp. 147-151, 1988.
  7. S. Smith and J. Brady, "SUSAN-A new approach to low level image processing," Int. J. Computer Vision, vol. 23, no. 1, pp. 45-78, May 1997. https://doi.org/10.1023/A:1007963824710
  8. M. Trajkovic and M. Hedley, "Fast comer detection." Image and Vision Computing, vol. 16, no. 2, pp. 75-87, Feb. 1998. https://doi.org/10.1016/S0262-8856(97)00056-5