Low-Power ECG Detector and ADC for Implantable Cardiac Pacemakers

이식형 심장 박동 조율기를 위한 저전력 심전도 검출기와 아날로그-디지털 변환기

  • Published : 2009.03.31

Abstract

A wavelet Electrocardiogram(ECG) detector and its analog-to-digital converter(ADC) for low-power implantable cardiac pacemakers are presented in this paper. The proposed wavelet-based ECG detector consists of a wavelet decomposer with wavelet filter banks, a QRS complex detector of hypothesis testing with wavelet-demodulated ECG signals, and a noise detector with zero-crossing points. To achieve high-detection performance with low-power consumption, the multi-scaled product algorithm and soft-threshold algorithm are efficiently exploited. To further reduce the power dissipation, a low-power ADC, which is based on a Successive Approximation Register(SAR) architecture with an on/off-time controlled comparator and passive sample and hold, is also presented. Our algorithmic and architectural level approaches are implemented and fabricated in standard $0.35{\mu}m$ CMOS technology. The testchip shows a good detection accuracy of 99.32% and very low-power consumption of $19.02{\mu}W$ with 3-V supply voltage.

본 논문에서 이식형 심장 박동 조율기를 위한 심전도 검출기와 아날로그-디지털 변환기(ADC)를 설계한다. 제안한 웨이블렛 심전도 검출기는 웨이블렛 필터 뱅크 구조의 웨이블렛 변조기, 웨이블렛 합성된 심전도 신호의 가설 검정을 통한 QRS 신호 검출기와 0-교차점을 이용한 잡음 검출기로 구성된다. 저전력 소모의 동작을 유지하며 보다 높은 검출 정확도를 갖는 심전도 검출기의 구현을 위해, 다중스케일 곱의 알고리즘과 적응형의 임계값을 갖는 알고리즘을 사용하였다. 또한 심전도 검출기의 입력단에 위치하는 저전력 Successive Approximation Register ADC의 구현을 위해, 신호 변환의 주기 중, 매우 짧은 시간 동안에만 동작하는 비교기와 수동 소자로 구성되는 Sample&Hold를 사용하였다. 제안한 회로는 표준 CMOS $0.35{\mu}m$ 공정을 사용하여 집적 및 제작되었고, 99.32%의 높은 검출 정확도와 3V의 전원 전압에서 $19.02{\mu}W$의 매우 낮은 전력 소모를 갖는 것을 실험을 통해 확인하였다.

Keywords

References

  1. L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, "A Very Low-Power CMOS Mixed-Signal IC for Implantable Pacemaker Applications," IEEE JSSC, vol. 39, no. 12, pp. 2246-2456, Dec. 2004
  2. G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle, "A Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms," IEEE Trans. on Biomedical Eng., vol. 37, no. 1, pp. 85-98, Jan. 1990 https://doi.org/10.1109/10.43620
  3. J. Pan, and W. J. Tompkins, "A Real-Time QRS Detection Algorithm," IEEE Trans. on Biomedical Eng., vol. 32, no. 3, pp. 230-236, Mar. 1985
  4. Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, "Applications of artificial neural networks for ECG signal detection and classification," J. Electrocardiol., vol. 26, pp. 66-73, 1994
  5. S. M. Szilagyi, and L. Szilagyi, "Wavelet Transform and Neural-Network-Based Adaptive Filtering for QRS Detection," Proceeding of the 22nd IEEE Engineering in Medicine and Biology, vol. 2, pp.1267-1270, Sep. 2003
  6. B. U. Kohler, C. Hennig, and R. Orglmeister, "The Principles of Software QRS Detection," IEEE Engineering in Medicine and Biology Magazine, vol. 21, no. 1, pp. 42-57, Jan.-Feb. 2002 https://doi.org/10.1109/51.993193
  7. A. Matsuzawa, "Technology Trend of ADCs," IEEE Symposium on VLSI-DAT, pp. 176-179, Apr. 2008
  8. B. Black, Analog-to-Digital Converter Architectures and Choices for System Design, Analog Devices, 1999
  9. A. P. Chandrakasan, N. Verma, and D. C. Daly, "Ultralow-Power Electronics for Biomedical Applications," Annual Review of Biomedical Engineering, vol. 10, pp. 247-274, Apr. 2008 https://doi.org/10.1146/annurev.bioeng.10.061807.160547
  10. M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, and B. Nauta, "A 1.9$\mu$W 4.4fJ/Conversion-step 10b 1MS/s Charge- Redistribution ADC," IEEE ISSCC Dig. Tech. Papers, pp. 244-245, Feb. 2008
  11. J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, "A 0.5-V 1-$\mu$W Successive Approximation ADC," IEEE JSSC, vol. 38, no. 7, pp. 1261-1265, Jul. 2003
  12. A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, "A 9.4-ENOB 1V 3.8$\mu$$\mu$W 100KS/s SAR ADC with Time-Domain Comparator," IEEE ISSCC Dig. Tech. Papers, pp. 246-247, Feb. 2008
  13. P. Getreuer, Filter Coefficients to Popular Wavelets, MATLAB Central, Oct. 2005
  14. S. G. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, Jul. 1989 https://doi.org/10.1109/34.192463
  15. www.physionet.org/physiobank/database/mitbih
  16. J. N. Rodrigues, T. Olsson, and V. Owall, "A Dual-Mode Wavelet Based R-Wave Detector using Single-Vt for Leakage Reduction," IEEE ISCAS, vol. 2, pp. 1330-1333, May 2005
  17. S. M. Kay, and J. R. Gabriel, "An Invariance Property of the Generalized Likelihood Ratio Test", IEEE Signal Processing Letters, vol. 10, no. 12, pp. 352-355, Dec. 2003 https://doi.org/10.1109/LSP.2003.818865
  18. P B. M. Sadler, T. Pham, and L. C. Sadler, "Optimal and wavelet-based shock wave detection and estimation," Journal Acoustic Society of America, vol. 104, no. 2, pp. 955-963, Aug. 1998 https://doi.org/10.1121/1.423312
  19. K. H. Kim, and S. J. Kim, "A Wavelet-Based Method for Action Potential Detection From Extra-cellular Neural Signal Recording With Low Signal-to-Noise Ratio," IEEE Trans. on Biomedical Eng., vol. 50, no. 8, pp. 999-1001, Aug. 2003 https://doi.org/10.1109/TBME.2003.814523
  20. D. L. Donoho, "De-Noising by Soft-Threshold," IEEE Trans. on Information Theory, vol. 41, no. 3, pp. 613-626, May 1992 https://doi.org/10.1109/18.382009
  21. V. T. Jordanov, D. L. Hall, and M. Kastner, "Digital Peak Detector with Noise Threshold," IEEE Nuclear Science Symposium Conference Record, vol. 1, pp. 140-142, Nov. 2002
  22. K. A. K. Azad, Z. M. Darus, and M. A. M. Ali, "Testable ASIC Design for A Fuzzy Logic Based QRS Complex Detector," IEEE ICSE, pp.175-178, Nov. 1998
  23. D. S. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, "A New QRS Detection Algorithm Based on the Hilbert Transform," Computers in Cardiology, pp. 379 - 382, Sep. 2000
  24. F. Emnett, and M. Biegel, Power Reduction Through RTL Clock Gating, Automotive Integrated Electronics Corporation, 2000
  25. K. Loy, "Leakage Power Reduction in Low-Voltage CMOS Design," IEEE ICECS, vol. 2, pp. 167-173, Sep. 1998