Modal Properties of a Tall Reinforced Concrete Building Based on the Field Measurement and Analytical Models

실측 및 해석모델에 의한 철근콘크리트조 주상복합건물의 모드특성

  • Received : 2009.04.24
  • Accepted : 2009.06.10
  • Published : 2009.06.30

Abstract

Natural frequency is a key parameter to determine the seismic and wind loading of tall flexible structures, and to assess the wind-induced vibration for serviceability check. In this study, natural frequencies and associated mode shapes were obtained from measured acceleration data and system identification technique. Subsequently, finite element(FE) models for a tall reinforced concrete buildings were built using a popular PC-based finite element analysis program and calibrated to match their natural frequencies and mode shapes to actual values. The calibration of the FE model included: 1) compensation of modulus of elasticity considering the mix design strength, 2) flexural stiffness of floor slabs, and 3) major non-structural components such as plain concrete walls. Natural frequencies and mode shapes from the final FE model showed best agreement with the measured values.

건축구조물의 고유진동수는 지진하중 혹은 풍하중의 크기를 결정하고 바람에 의한 진동을 예측하여 사용성조건을 검토하기 위해 반드시 필요하다. 본 논문에서는 철근콘크리트조 주상복합건물을 대상으로 현장계측을 통해 얻은 데이터와 시스템 식별기법을 사용하여 얻은 고유진동수와 모드형상을 해석모델에 의한 결과와 비교하였다. 해석모델은 실무에 일반적으로 사용되어지는 PC기반의 유한요소해석 프로그램을 사용하여 작성하였으며, 골조만을 모델링한 기본모델로부터 계측당시 구조물의 강성에 영향을 미칠 것으로 판단되는 요소들을 단계적으로 포함시켜 가면서 그 결과를 계측치에서 얻은 값과 비교하였다. 기본모델로부터 수정된 사항은 1) 콘크리트 배합강도를 고려한 탄성계수의 보정, 2) 바닥 슬래브의 휨강성, 3) 비구조벽이다. 이와 같은 요소를 모두 포함한 해석모델은 실제 계측치로부터 얻은 고유진동수, 모드형상과 가장 유사한 결과를 나타내었다.

Keywords

References

  1. 건축구조설계기준(Korean Building Code, KBC) (2005)
  2. 김지영, 박재근, 김대영, 김상대 (2007) 풍응답을 이용한 구조물의 동특성 평가, 한국강구조학회 학술발표논문집, pp.125-128
  3. 유은종, 김승남, 김지영, 김대영, 김유승, 장수혁 (2008) 초고층 주거복합 건물의 미진동 계측 및 구조물 식별, 한국지진공학회 춘계학술발표회 논문집, pp.371-378
  4. ACI Committee 318. (2002) Building code requirements for structural concrete and commentary (ACI 318-02), American Concrete Institute, FarmingtonHills, Michigan
  5. Allemang, R.J., Brown, D.L. (1982) A correlation coefficient for modal vector analysis, Proceedings of the 1st International Modal Analysis Conference, Orlando, Florida, pp.110-116
  6. AS/NZS1170.2 (2002) Australian/New Zealand Standard, Structural design actions, Part 2: Wind Actions, Standards Australia & Standards New Zealand
  7. Brincker R, Zhang L, Andersen P. (2000) Modal identification from ambient responses using frequency domain decomposition, Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, 4062(2), pp.625-630
  8. Brownjohn, J.M.W., Pan, T.C., Deng, X.Y. (2000) Correlating dynamic characteristics from field measurements and numerical analysis of a high-rise building, Earthquake Engineering and Structural Dynamics, 29(4), pp.523-543 https://doi.org/10.1002/(SICI)1096-9845(200004)29:4<523::AID-EQE920>3.0.CO;2-L
  9. Computers and Structures Inc (2006) SAP2000, Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures;Berkeley, California
  10. Ellis, B.R. (1980) An assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures, Proc. Inst. Civ. Eng., 69(pt 2), pp763-776 https://doi.org/10.1680/iicep.1980.2376
  11. Eurocode ENV1991-2-4 (1994) EUROCODE 1:Basis of Design and Actions on Structures, Part 2.4: Wind Actions, CEN/TC 250/Sc1
  12. Kohler, M., Davis, P., Safak, E. (2005) Earthquake and ambient vibration monitoring of the steel-frame UCLA Factor Building, Earthquake Spectra, 21(3), pp.715-736 https://doi.org/10.1193/1.1946707
  13. Lagomarsino, S. (1993) Forecast models for damping and vibration periods of buildings, J. Wind Eng. Ind. Aerodyn, 48, pp.221-239 https://doi.org/10.1016/0167-6105(93)90138-E
  14. Lee, D.G., Kimm H.S., Chunm M.H. (2002) Efficient seismic analysis of high-rise building structures with the effect of floor slabs, Engineering Structures, 24(2), pp.613-623 https://doi.org/10.1016/S0141-0296(01)00126-2
  15. Peeters, B., Roeck, G.D. (2001) Stochastic system identification for opreational modal analysis: A review, Journal of Dynamic systems Measurement and control, 123, pp.659-667 https://doi.org/10.1115/1.1410370
  16. Su, R.K.L., Chandler, A.M., Lee, P.K.K., To, A., Li, J.H. (2003) Dynamic testing and modelling of existing buildings in Hong Kong, Hong Kong Inst. Eng. Trans, 10(2), pp.17-25
  17. Su, R.K.L., Chandler, A.M., Sheikh, M.N., Lam, N.T.K. (2005) Influence of non-structural components on lateral stiffness of tall buildings, Structural Design of Tall and Special Buildings, 14(2), pp.143-164 https://doi.org/10.1002/tal.266
  18. Tamura, Y., Suda, K., Sasaki, A. (2000) Damping in buildings for wind resistant design, in:Proceedings of the International Symposium on Wind and Structures, Techno-Press, Korea, pp.115-130
  19. Yu E, Taciroglu E, Wallace JW. (2007) Parameter identification of framed structures using an improved finite element model updating method-Part I: Formulation & validation, Earthquake Engineering & Structural Dynamics, 36, pp.619-639 https://doi.org/10.1002/eqe.646