Large Deformation Inelastic Analysis of API-X80 Steel Linepipes

API-X80 강재 라인파이프의 대변형 비선형 해석

  • 이승정 (고려대학교 건축.사회환경공학부) ;
  • 윤영철 (명지전문대학 토목과) ;
  • 조우연 (포항산업과학연구원 강구조연구소) ;
  • 유성문 (고려대학교 건축.사회환경공학부) ;
  • 지광습 (고려대학교 건축.사회환경공학부)
  • Received : 2009.06.12
  • Accepted : 2009.06.30
  • Published : 2009.08.30

Abstract

We simulated large deformation and inelastic behavior of API-X80 steel linepipes using nonlinear finite element method. Gurson-Tvergaard-Needleman(GTN) model is employed for the development of the constitutive model of the steel. The GTN model is implemented in the form of the user-supplied material subroutine(UMAT) for the commercial software of ABAQUS. To calibrate the model parameters, we simulated the behavior of the uniaxial tension test using ABAQUS equipped with the developed GTN model. Using the set of the model parameters, we were able to capture the characteristics of the plastic buckling of API-X80 steel linepipes.

본 논문에서는 비선형 유한요소해석 기법을 이용하여 API-X80 강재 라인파이프의 대변형 비선형 거동을 모사하였다. 강재의 구성방정식을 작성하기 위해 GTN(Gurson-Tvergaard-Needleman) 모델을 사용하였다. 대변형 해석을 위해 범용 유한요소해석 프로그램인 ABAQUS과 연계해서 사용할 수 있는 사용자 서브루틴(User Subroutine)의 사용자 재료모델(UMAT)을 개발하였다. 유한요소해석 결과와 일축인장실험의 결과와의 비교를 통해 GTN 모델에서 사용되는 재료모델상수를 도출하였다. 도출된 모델상수를 이용해 API-X80 강재 라인파이프의 소성 좌굴변형해석을 실시하여 실험결과와 비교하였고 소성 좌굴변형에서 발생하는 거동 특성을 성공적으로 모사하였다.

Keywords

References

  1. 서동한, 송우현, 안성수, 김충명, 유장용 (2007) API-X80/X100 급 강판과 파이프의 미세조직과 기계적 물성, POSCO 硏究論文, 12(1), pp.20-27
  2. 정준모, 조상래 (2008) 구조물용 강재의 파단기준에 대한 실험 및 이론 연구, 대한조선학회논문집, 45(2), pp.157-167 https://doi.org/10.3744/SNAK.2008.45.2.157
  3. 조우연, 안성수, 윤태양, 유장용 (2007) API-X80 라인파이프의 좌굴 안정성 평가, 한국전산구조공학회 2007년도 봄학술발표회 논문집, pp.211-216
  4. Acharyya, S., Dhar, S. (2008) A complete GTN model for prediction of ductile failure of pipe, Journal of Materials Science, 43(6), pp.1897-1909 https://doi.org/10.1007/s10853-007-2369-0
  5. Aravas, N. (1987) On the numerical integration of a class of pressure-dependent plasticity models, International Journal for Numerical Methods in Engineering, 24, pp.1395-1416 https://doi.org/10.1002/nme.1620240713
  6. Belytschko, T., Black, T. (1999) Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45(5), pp.601-620 https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  7. Bordas, S., Rabczuk, T., Zi, G. (2008). Threedimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engineering Fracture Mechanics, 75(5), pp.943-960 https://doi.org/10.1016/j.engfracmech.2007.05.010
  8. Franklin, A.G. (1969) Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions, Iron and Steel Institute, 207, pp.181-186
  9. Gurson, A.L. (1977) Continuum theory of ductile rupture by void nucleation and growth:Part-1 Yield criteria and flow rules for porous ductile media, Engineering Material and Technology, 99, pp.2-15 https://doi.org/10.1115/1.3443401
  10. McClitock, F.A. (1968) A criterion for ductile fracture by growth of holes, Journal of Applied Mechanics, 35, pp.363-371 https://doi.org/10.1115/1.3601204
  11. Moes, N., Dolbow, J., Belytschko, T. (1999) A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46(1), pp.131-150 https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  12. Oh, C.K., Kim, Y.J., Baek, J.H., Kim, Y.P., Kim, W.S. (2007) A phenomenological model of ductile fracture for API X65 steel, International Journal of Mechanical Sciences, 49, pp.1399-1412 https://doi.org/10.1016/j.ijmecsci.2007.03.008
  13. Rabczuk, T., Bordas, S., Zi, G. (2007) A threedimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics, Computational Mechanics, 40(3), pp.473-495 https://doi.org/10.1007/s00466-006-0122-1
  14. Rabczuk, T., Zi, G. (2007) A meshfree method based on the local partition of unity for cohesive cracks, Computational Mechanics, 39(6), pp.743-760 https://doi.org/10.1007/s00466-006-0067-4
  15. Rice, J.R., Tracey, D.M. (1969) On the ductile enlargement of voids in triaxial stress fields, Mechanics and Physics of Solids, 17(3), pp.201-217 https://doi.org/10.1016/0022-5096(69)90033-7
  16. Tvergaard, V, Needleman, A. (1984) Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, 32(1), pp.157-169 https://doi.org/10.1016/0001-6160(84)90213-X
  17. Zi, G., Belytschko, T. (2003) New crack-tip elements for XFEM and applications to cohesive cracks, International Journal for Numerical Methods in Engineering, 57(15), pp.2221-2240 https://doi.org/10.1002/nme.849
  18. Zi, G., Chen, H., Xu, J., Belytschko, T. (2005) The extended finite element method for dynamic fractures, Shock and Vibration, 12(1), pp.9-23 https://doi.org/10.1155/2005/729090
  19. Zi, G., Rabczuk, T., Wall, W. (2007) Extended meshfree methods without branch enrichment for cohesive cracks, Computational Mechanics, 40(2), pp.367-382 https://doi.org/10.1007/s00466-006-0115-0
  20. Zi, G., Song, J.H., Budyn, E., Lee, S.H., Belytschko, T. (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth, Modelling and Simulation in Materials Science and Engineering, 12(5), pp.901-915 https://doi.org/10.1088/0965-0393/12/5/009