MLS기반 유한요소와 그 응용에 관한 제언

MLS-Based Finite Elements and a Proposal for Their Applications

  • 조영삼 (원광대학교 기계자동차공학부)
  • 투고 : 2009.06.05
  • 심사 : 2009.08.07
  • 발행 : 2009.08.30

초록

본 논문에서는 MLS기반 유한요소에 대한 현재 개발상황에 대한 개관과 향후 예상할 수 있는 응용분야에 대한 제안을 하였다. 이동최소제곱근사를 이용하여 형상함수를 생성하는 MLS기반 유한요소는, 요소의 경계에서 기존 유한요소의 성질-크로네커 델타 조건-을 가지면서도 기존 요소가 갖지 못했던 임의의 절점 추가가 자유롭다는 장점이 있어 다양한 변절점 요소로의 개발이 이루어져 왔다. 선형 또는 이차형상함수를 갖는 2차원 변절점요소 뿐 아니라, 균열선단과 균열면을 포함하고 있는 2차원 균열요소와 3차원에서의 제한적인 변절점요소 등이 개발되어 다양한 불연속성 문제에 적용 가능함이 입증되었다. 이러한 MLS기반 유한요소는 향후 2차원 변절점 3각요소, 2차원 삼각균열요소, 변절점 쉘요소, 균열 쉘요소, 마칭큐브알고리즘에 적합한 3차원 다면체요소로의 개발이 가능할 것으로 예상되며, 본 논문에서는 그 일례로 3차원 다면체요소를 이용한 대퇴골의 요소망 생성을 보였다.

In this paper, review of developed MLS-based finite elements and a proposal for their applications are described. The shape functions and their derivatives of MLS-based finite elements are constructed using Moving-Least Square approximation. In MLS-based finite element, using the adequate influence domain of weight function used in MLS approximation, kronecker delta condition could be satisfied at the element boundary. Moreover, because of the characteristics of MLS approximation, we could easily add extra nodes at an arbitrary position in MLS-based finite elements. For these reasons, until now, several variable-node elements(2D variable element for linear case and quadratic case and 3D variable-node elements) and finite crack elements are developed using MLS-based finite elements concept. MLS-based finite elements could be extended to 2D variable-node triangle element, 2D finite crack triangle element, variable-node shell element, finite crack shell element, and 3D polyhedron element. In this paper, we showed the feasibility of 3D polyhedron element at the case of femur meshing.

키워드

참고문헌

  1. Belytschko, T., Black, T. (1999) Elastic crck growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45, pp. 601-620 https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  2. Cho, Y.S., Jun, S., Im, S., Kim, H.G. (2005) An improved interface element with variable nodes for non-matching finite element meshes, Comput. Methods Appl. Mech. Engrg., 194, pp.3022-3046 https://doi.org/10.1016/j.cma.2004.08.002
  3. Cho, Y.S., Im, S. (2006) MLS-based variable-node elements compatible with quadratic interpolation. Part I: Formulation and application for nonmatching meshes, Int. J. Numer. Meth. Eng., 65, pp.494-516 https://doi.org/10.1002/nme.1453
  4. Cho, Y.S., Im, S. (2006) MLS-based variable-node elements compatible with quadratic interpolation. Part II: application for finite crack element, Int. J. Numer. Meth. Eng., 65, pp.517-547 https://doi.org/10.1002/nme.1452
  5. Kim, H.G. (2002) Interface element method (IEM) for a partitioned system with non-matching interfaces, Comput. Methods Appl. Mech. Engrg., 191, pp.3165-3194 https://doi.org/10.1016/S0045-7825(02)00255-4
  6. Kim, J.H., Lim, J.H., Lee, J.H., Im, S. (2007) A new computational approach to contact mechanics using variable-node finite elements, Int. J. Numer. Meth. Eng., 73, pp.1966-1988 https://doi.org/10.1002/nme.2162
  7. Lim, J.H., Im, S., Cho, Y.S. (2007) MLS (moving least square)-based finite elements for threedimensional nonmatching meshes and adaptive mesh refinement, Comput. Methods Appl. Mech. Eng., 196, pp.2216-2218 https://doi.org/10.1016/j.cma.2006.11.014
  8. Lim, J.H., Im, S., Cho, Y.S. (2007) Variable-node elements for non-matching meshes by means of MLS(moving least-square) scheme, Int. J. Numer. Meth. Eng., 72 pp.835-857 https://doi.org/10.1002/nme.1988
  9. Pustejovsky M.A. (1979) Fatigue crack propagation in titanium under general in-plane loading-.I: experiments, Engineering Fracture Mechanics, 11, pp.9-15 https://doi.org/10.1016/0013-7944(79)90025-0
  10. Sohn, D., Lim, J.H., Cho, Y.S., Im, S. (2009) Multiscale finite element method for heterogeneous media with microstructures: crack propagation in a porous medium, Journal of Multiscale Modelling, 1, pp.157-176 https://doi.org/10.1142/S1756973709000086
  11. Swenson D.V., Kaushik N. (1990) Finite element analysis of edge cracking in plates, Engineering Fracture Mechanics, 37, pp.641-652 https://doi.org/10.1016/0013-7944(90)90386-U