Experimental Evaluation of Design Parameters for TLCD and LCVA

TLCD와 LCVA의 설계파라미터에 대한 실험적 평가

  • Received : 2009.03.30
  • Accepted : 2009.07.07
  • Published : 2009.10.30

Abstract

In this paper, damping coefficients and effective masses of tuned liquid-type column dampers were quantitatively evaluated based on experimental results by using system identification technique. First, shaking table tests were performed for two types of tuned liquid-type column dampers. Then, the dynamic characteristics of dampers used in this study were experimentally grasped from harmonic wave excitation testing results of the dampers with various water level. Finally, damping ratios and effective masses of the dampers with varying water level were quantitatively evaluated from minimizing the errors between numerical and experimental results. It was confirmed from system identification results that damping ratio and effective mass are decreased as the water level of dampers is increased.

본 연구에서는 실험결과를 바탕으로 액체형 기둥감쇠기의 감쇠계수와 제어력에 참여하는 유효질량을 시스템 식별기법을 이용하여 정량적으로 평가하였다. 먼저, 두가지 형태의 동조액체형 기둥감쇠기를 제작하여 진동대 실험을 실시하였다. 다음으로 수조내부 액체의 수위를 변화시켜 가면서 조화하중 가진실험에 의한 감쇠기의 동적특성을 실험적으로 구하였다. 마지막으로 수치해석 모델과 실험결과와의 오차를 최소화하는 것에 의해 수위변화에 따른 감쇠기의 감쇠비와 유효질량을 정량적으로 평가하였다. 시스템 식별결과로부터 감쇠비와 유효질량이 감쇠기의 수위가 증가함에 따라 감소하는 것으로 나타났다.

Keywords

References

  1. 이성경, 민경원, 박은천 (2008) TMD와 TLCD를 이용한 2방향 감쇠기의 동적특성, 한국전산구조공학회 논문집, 21(6), pp.598-596
  2. 허재성, 박은천, 이성경, 이상현, 김홍진, 조지성, 조봉호, 주석준, 민경원 (2008) 실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험, 한국전산구조공학회 논문집, 21(2), pp.161-168
  3. Battista, R.C., Carvalho, E.M.L., Souza, R.A. (2008) Hybrid fluid-dynamic control devices to attenuate slender structures oscillations, Engineering Structures, 30(12), pp.3513-3522 https://doi.org/10.1016/j.engstruct.2008.05.022
  4. Chang, C.C., Hsu, C.T. (1998a) Control performance of liquid column vibration absorbers, Engineering Structures, 20(7), pp.580-586 https://doi.org/10.1016/S0141-0296(97)00062-X
  5. Chang, C.C., Qu, W.L. (1998b) Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings, Struct. Design Tall Build., 7, pp.147-166 https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3
  6. Gao, H., Kwok, K.C.S. (1997) Optimization of tuned liquid column dampers, Engineering Structures, 19(6), pp.476-486 https://doi.org/10.1016/S0141-0296(96)00099-5
  7. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D. (1997a) Characteristics of liquid column vibration absorbers(LCVA) -I, Engineering Structures, 19(2), pp.126-134 https://doi.org/10.1016/S0141-0296(96)00042-9
  8. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D. (1997b) Characteristics of liquid column vibration absorbers(LCVA) -Ⅱ, Engineering Structures, 19(2), pp.135-144 https://doi.org/10.1016/S0141-0296(96)00044-2
  9. Sakai, F., Takaeda, S., Tamaki, T. (1989) Tuned Liquid Column Damper-New Type Device for Suppression of Building Vibrations, Proc. Int. Conf. on Highrise Buildings, Nanjing, China, pp.926-931
  10. Shum, K.M. (2008) Closed form optimal solution of a tuned liquid column damper for supressing harmonic vibration of structures, Engineering Structures, doi:10.1016/j.engstruct.2008.07. 015, in press
  11. Soong, T.T., Dargush, G.F. (1997) Passive Energy Dissipation Systems in Structural Enginnering, John Wiley & Sons
  12. Watkins, R.D. (1991) Tests on Various Arrangements of Liquid Column Vibration Absorbers, Research Report R639, School of Civil and Mining Engineering, University of Sydney
  13. Wu, J.C. Shih, M.H., Lin, Y.Y., Shen, Y.C. (2005) Design guidelines for tuned liquid column damper for structures responding to wind, Engineering Structures, 27(13), pp.1893-1905 https://doi.org/10.1016/j.engstruct.2005.05.009
  14. Yalla, S.K., Kareem, A. (2000) Optimum absorber parameters for tuned liquid column dampers, Journal of Structural Engineering, 126(8), pp.906-915 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906)