(\boldsymbol{L}, \odot)-quasi-uniform Spaces and (\boldsymbol{L}, \odot)-neighborhood Systems

Yong Chan Kim ${ }^{1}$ and Jung Mi Ko ${ }^{2}$
Department of Mathematics, Kangnung-Wonju National University, Gangneung, 201-702, Korea

Abstract

In this paper, we introduced the notion of (L, \odot)-quasi-uniform spaces and (L, \odot)-neighborhood systems on a strictly two-sided, commutative quantale lattice L. We investigate their properties and give the examples. In particular, we study the relations between (L, \odot)-quasi-uniform spaces and (L, \odot)-neighborhood systems.

Key Words : Quantale lattice $L(\odot)$-topologies, (L, \odot)-filters, (L, \odot)-quasi-uniform spaces, (L, \odot)-neighborhood systems

1. Introduction and preliminaries

Uniformities in fuzzy sets, have the entourage approach [$1,2,7,9,11,12]$ based on powersets of the form $L^{X \times X}$, the uniform covering approach of Kotzé [8], the uniform operator approach of Rodabaugh [11] as generalization of Hutton [5] based on powersets of the form $\left(L^{X}\right)^{\left(L^{X}\right)}$, the unification approach of García et al. [2]. For a fixed basis L, algebraic structures in L (cqm-lattices, quantales, MValgebras) are extended for a completely distributive lattice L [9] or t-norms [12]. Recently, Kim [7] introduced (L, \odot)-fuzzy quasi-uniformities as a view point of stsc biquantales L [10].

In this paper, we introduced the notion of (L, \odot)-quasiuniform spaces and (L, \odot)-neighborhood systems on a strictly two-sided, commutative quantale lattice L. We investigate their properties and give the examples. In particular, we study the relations between (L, \odot)-quasi-uniform spaces and (L, \odot)-neighborhood systems.

Definition 1.1. [10] A triple (L, \leq, \odot) is called a strictly two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies the following conditions:
(Q1) $L=(L, \leq, \vee, \wedge, 1,0)$ is a completely distributive lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
(Q2) (L, \odot) is a commutative semigroup;
(Q3) $a=a \odot 1$, for each $a \in L$;
$(\mathrm{Q} 4) \odot$ is distributive over arbitrary joins, i.e.

$$
\left(\bigvee_{i \in \Gamma} a_{i}\right) \odot b=\bigvee_{i \in \Gamma}\left(a_{i} \odot b\right)
$$

Lemma 1.2. $[3,7,10]$ Let (L, \leq, \odot) be a stsc-quantale. For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z,(x \odot y) \leq(x \odot z), x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(2) $x \odot y \leq x \wedge y \leq x \vee y$.
(3) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$.
(4) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(5) $(x \rightarrow y) \odot(z \rightarrow w) \leq(x \odot z) \rightarrow(y \odot w)$.
(6) $(y \rightarrow z) \leq(x \odot y) \rightarrow(x \odot z)$.
(7) $(y \rightarrow z) \leq(x \rightarrow y) \rightarrow(x \rightarrow z)$ and $(y \rightarrow x) \leq$ $(x \rightarrow z) \rightarrow(y \rightarrow z)$.
(8) $\left(x_{i} \rightarrow y_{i}\right) \leq\left(\bigwedge_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)$.
(9) $\left(x_{i} \rightarrow y_{i}\right) \leq\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right)$.

Definition 1.3. [6] A mapping $\tau: L^{X} \rightarrow L$ is called an (L, \odot)-topology on X if it satisfies the following conditions:
(O1) $\tau(\overline{0})=\tau(\overline{1})=1$ where $\alpha \in L, \bar{\alpha}(x)=\alpha$ for each $x \in X$.
(O2) $\tau\left(f_{1} \odot f_{2}\right) \geq \tau\left(f_{1}\right) \odot \tau\left(f_{2}\right)$, for any $f_{1}, f_{2} \in L^{X}$.
(O3) $\tau\left(\bigvee_{i \in \Gamma} f_{i}\right) \geq \bigwedge_{i \in \Gamma} \tau\left(f_{i}\right)$, for any $\left\{f_{i}\right\}_{i \in \Gamma} \subset$ L^{X}.

An (L, \odot)-topology is called enriched if
(E) $\tau(\alpha \odot f) \geq \tau(f)$ for each $f \in L^{X}$ and $\alpha \in L$.

The pair (X, τ) is called an (resp. enriched) (L, \odot) topological space.

Let $\left(X, \tau_{1}\right)$ and $\left(Y, \tau_{2}\right)$ be two (L, \odot)-topological spaces. A mapping $\psi: X \rightarrow Y$ is said to be $L F$ continuous iff $\tau_{2}(g) \leq \tau_{1}\left(\psi^{\leftarrow}(g)\right)$ for each $g \in L^{Y}$.
Definition 1.4. [2,6] A mapping $\mathcal{F}: L^{X} \rightarrow L$ is called an (L, \odot)-filter on X if it satisfies the following conditions:
(F1) $\mathcal{F}(\overline{0})=0$ and $\mathcal{F}(\overline{1})=1$.
(F2) $\mathcal{F}(f \odot g) \geq \mathcal{F}(f) \odot \mathcal{F}(g)$, for each $f, g \in L^{X}$.
(F3) If $f \leq g, \mathcal{F}(f) \leq \mathcal{F}(g)$.
An (L, \odot)-filter is called stratified if
(S) $\mathcal{F}(\alpha \odot f) \geq \alpha \odot \mathcal{F}(f)$ for each $f \in L^{X}$ and $\alpha \in L$. The pair (X, \mathcal{F}) is called an (resp. stratified) (L, \odot)-filter space. We denote $F_{\odot}(X)$ (resp. $\left.F_{\odot}^{s}(X)\right)$ as the family of (resp. stratified) (L, \odot)-filters on X.

Let \mathcal{F}_{1} and \mathcal{F}_{2} be (L, \odot)-filters on X. We say \mathcal{F}_{1} is finer than \mathcal{F}_{2} (or \mathcal{F}_{2} is coarser than \mathcal{F}_{1}), denoted by $\mathcal{F}_{2} \leq \mathcal{F}_{1}$, iff $\mathcal{F}_{2}(f) \leq \mathcal{F}_{1}(f)$ for all $f \in L^{X}$. Let $\left(X, \mathcal{F}_{1}\right)$ and $\left(Y, \mathcal{F}_{2}\right)$ be (L, \odot)-filter spaces. A mapping $\psi: X \rightarrow Y$ is said to be an (L, \odot)-filter map iff $\mathcal{F}_{2}(g) \leq \mathcal{F}_{1}\left(\psi^{\leftarrow}(g)\right)$ for each $g \in L^{Y}$.

Definition 1.5. [6] A map $\mathcal{N}: X \rightarrow L^{L^{X}}$ is called an (resp. stratified) (L, \odot)-neighborhood system on X if $\mathcal{N}(x)=\mathcal{N}_{x}$ is an (resp. stratified) (L, \odot)-filter and satisfies the following conditions:
(N1) $\mathcal{N}_{x}(f) \leq[x](f)$, where $[x](f)=f(x)$ for all $f \in L^{X}$,
(N2) $\mathcal{N}_{x}(f) \leq \bigvee\left\{\mathcal{N}_{x}(g) \mid g(y) \leq \mathcal{N}_{y}(f), \forall y \in X\right\}$, for all $f \in L^{X}$.

2. The Properties of (L, \odot)-filters

Theorem 2.1. Let $\mathcal{U}, \mathcal{V}, \mathcal{W} \in F_{\odot}(X \times X)$. We define $\mathcal{U}^{-1}, \mathcal{U} \circ \mathcal{V}: L^{X \times X} \rightarrow L$ as follows:

$$
\begin{gathered}
\mathcal{U}^{-1}(w)=\mathcal{U}\left(w^{-1}\right) \\
(\mathcal{U} \circ \mathcal{V})(w)=\bigvee\{\mathcal{U}(u) \odot \mathcal{V}(v) \mid u \circ v \leq w\}
\end{gathered}
$$

where $u \circ v(x, z)=\bigvee_{y \in X}(u(x, y) \odot v(y, z))$ and $w^{-1}(x, y)=w(y, x)$.
(1) $u \circ v=\perp$ implies $\mathcal{U}(u) \odot \mathcal{V}(v)=\perp$ iff $(\mathcal{U} \circ \mathcal{V}) \in$ $F_{\odot}(X \times X)$.
(2) If $\mathcal{U}\left(1_{\triangle}\right)=\top$ where $1_{\triangle}(x, x)=\top$ and $1_{\triangle}(x, y)=\perp$ for $x \neq y \in X$, then $\mathcal{U} \circ \mathcal{U} \geq \mathcal{U}$.
(3) Put $[(x, x)](u)=u(x, x)$ for all $u \in L^{X \times X}$. Then $\mathcal{U} \circ[(x, x)] \in F_{\odot}^{s}(X \times X)$ and $\mathcal{U} \circ[(x, x)] \geq \mathcal{U}$.
(4) $[(x, x)] \circ[(x, x)]=[(x, x)]$.
(5) Put $[\triangle](u)=\bigwedge_{x \in X}[(x, x)](u)=\bigwedge_{x \in X} u(x, x)$ for all $u \in L^{X \times X}$. Then $[\triangle] \circ[\triangle]=[\triangle]$.
(6) $\mathcal{U} \circ \mathcal{U}^{-1} \in F_{\odot}(X \times X)$.
(7) $(\mathcal{U} \circ \mathcal{V})^{-1}=\mathcal{V}^{-1} \circ \mathcal{U}^{-1}$.
(8) $(\mathcal{U} \circ \mathcal{V}) \circ \mathcal{W}=\mathcal{U} \circ(\mathcal{V} \circ \mathcal{W})$.
(9) If $\mathcal{U}_{i}, \mathcal{V}_{i} \in F_{\odot}(X \times X)$ for $i \in\{1,2\}$, then $\left(\mathcal{U}_{1} \circ \mathcal{U}_{2}\right) \odot\left(\mathcal{V}_{1} \circ \mathcal{V}_{2}\right) \leq\left(\mathcal{U}_{1} \odot \mathcal{V}_{1}\right) \circ\left(\mathcal{U}_{2} \odot \mathcal{V}_{2}\right)$.

Proof. (1) First, we show that $\left(u_{1} \odot u_{2}\right) \circ\left(v_{1} \odot v_{2}\right) \leq$ $\left(u_{1} \circ v_{1}\right) \odot\left(v_{2} \circ u_{2}\right)$ from:

$$
\begin{aligned}
& \left(\left(u_{1} \odot u_{2}\right) \circ\left(v_{1} \odot v_{2}\right)\right)(x, z) \\
& =\bigvee_{y \in X}\left(\left(u_{1} \odot u_{2}\right)(x, y) \odot\left(v_{1} \odot v_{2}\right)(y, z)\right) \\
& \leq \bigvee_{y \in X}\left(\left(u_{1}(x, y) \odot v_{1}(y, z)\right)\right. \\
& \odot \bigvee_{w \in X}\left(u_{2}(x, w) \odot v_{2}(w, z)\right) \\
& =\left(\left(u_{1} \circ v_{1}\right) \odot\left(u_{2} \circ v_{2}\right)\right)(x, z) .
\end{aligned}
$$

$(\mathcal{U} \circ \mathcal{V})(u) \odot(\mathcal{U} \circ \mathcal{V})(v)$
$=\bigvee_{u_{1} \circ v_{1} \leq u}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(v_{1}\right)\right) \odot \bigvee_{u_{2} \circ v_{2} \leq v}\left(\mathcal{U}\left(u_{2}\right) \odot \mathcal{V}\left(v_{2}\right)\right)$
$\leq \bigvee_{\left(u_{1} \circ v_{1}\right) \odot\left(u_{2} \circ v_{2}\right) \leq u \odot v}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(v_{1}\right) \odot \mathcal{U}\left(u_{2}\right) \odot \mathcal{V}\left(v_{2}\right)\right)$
$\left.\leq \bigvee_{\left(u_{1} \circ v_{1}\right) \odot\left(u_{2} \circ v_{2}\right) \leq u \odot v}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right)\right) \odot \mathcal{V}\left(v_{1}\right) \odot \mathcal{V}\left(v_{2}\right)\right)$
$\leq \bigvee_{\left(u_{1} \odot u_{2}\right) \circ\left(v_{1} \odot v_{2}\right) \leq u \odot v}\left(\mathcal{U}\left(u_{1} \odot u_{2}\right) \odot \mathcal{V}\left(v_{1} \odot v_{2}\right)\right)$
$\leq(\mathcal{U} \circ \mathcal{V})(u \odot v)$.
Hence $(\mathcal{U} \circ \mathcal{V}) \in F_{\odot}(X \times X)$. Conversely, it easily proved.
(2) For $u \circ 1_{\triangle}=u$, we have

$$
(\mathcal{U} \circ \mathcal{U})(u) \geq \mathcal{U}(u) \odot \mathcal{U}\left(1_{\triangle}\right)=\mathcal{U}(u)
$$

(3) Put $[(x, x)](u)=u(x, x)$ for all $u \in L^{X \times X}$.

Since $[(x, x)](\alpha \odot u)=\alpha \odot u(x, x)=\alpha \odot[(x, x)](u)$,
$[(x, x)] \in F_{\odot}^{s}(X \times X)$.
For $u \circ 1_{\triangle}=u$, we have

$$
(\mathcal{U} \circ[(x, x)])(u) \geq \mathcal{U}(u) \odot[(x, x)]\left(1_{\triangle}\right)=\mathcal{U}(u)
$$

(4) For $u_{1} \circ u_{2} \leq u$, we have

$$
\begin{aligned}
([(x, x)] \circ[(x, x)])(u) & =\bigvee_{x \in X}\left(\left([(x, x)]\left(u_{1}\right) \odot[(x, x)]\left(u_{2}\right)\right)\right. \\
& \leq u(x, x)=[(x, x)](u)
\end{aligned}
$$

By (3), the result holds.
(5) For $u \circ 1_{\triangle}=u$, we have

$$
\begin{aligned}
& \left(\bigwedge_{x \in X}[(x, x)] \circ \bigwedge_{x \in X}[(x, x)]\right)(u) \\
& \geq \bigwedge_{x \in X}[(x, x)](u) \odot \bigwedge_{x \in X}[(x, x)]\left(1_{\triangle}\right) \\
& =\bigwedge_{x \in X}[(x, x)](u) .
\end{aligned}
$$

For $u \circ v \leq w$,

$$
\begin{aligned}
& \bigwedge_{x \in X}[(x, x)](u) \circ \bigwedge_{x \in X}[(x, x)](v) \\
& =\bigwedge_{x \in X} u(x, x) \odot \bigwedge_{x \in X} v(x, x) \\
& \leq \bigwedge_{x \in X}[(x, x)](u \circ v) \leq \bigwedge_{x \in X}[(x, x)](w) .
\end{aligned}
$$

(6) For $u \circ v=\perp$, we have $\mathcal{U}(u) \odot \mathcal{U}^{-1}(v) \leq \mathcal{U}(u \odot$ $\left.v^{-1}\right)=\perp$ because $\left(u \odot v^{-1}\right)(x, y) \leq u \circ v(x, x)=\perp$.
(7) Since $(v \circ u)^{-1}=u^{-1} \circ v^{-1}$, we have

$$
\begin{aligned}
\mathcal{V}^{-1} \circ \mathcal{U}^{-1}(w) & =\bigvee\left\{\mathcal{V}^{-1}(v) \odot \mathcal{U}^{-1}(u) \mid v \circ u \leq w\right\} \\
& =\bigvee\left\{\mathcal{V}\left(v^{-1}\right) \odot \mathcal{U}\left(u^{-1}\right) \mid u^{-1} \circ v^{-1} \leq w^{-1}\right\} \\
& =\mathcal{U} \circ \mathcal{V}\left(w^{-1}\right)=(\mathcal{U} \circ \mathcal{V})^{-1}(w) .
\end{aligned}
$$

(8) Suppose there exists $e \in L^{X \times X}$ such that

$$
((\mathcal{U} \circ \mathcal{V}) \circ \mathcal{W})(e) \not \leq(\mathcal{U} \circ(\mathcal{V} \circ \mathcal{W}))(e)
$$

Then there exists $d, w \in L^{X \times X}$ with $d \circ w \leq e$ such that

$$
(\mathcal{U} \circ \mathcal{V})(d) \odot \mathcal{W}(w) \not \leq(\mathcal{U} \circ(\mathcal{V} \circ \mathcal{W}))(e)
$$

Also, there exists $u, v \in L^{X \times X}$ with $u \circ v \leq d$ such that

$$
(\mathcal{U}(u) \odot \mathcal{V}(v)) \odot \mathcal{W}(w) \not \leq(\mathcal{U} \circ(\mathcal{V} \circ \mathcal{W}))(e) .
$$

Since $(u \circ v) \circ w=u \circ(v \circ w) \leq e$,

$$
(\mathcal{U} \circ(\mathcal{V} \circ \mathcal{W}))(e) \geq \mathcal{U}(u) \odot(\mathcal{V}(v) \odot \mathcal{W}(w))
$$

It is a contradiction. Hence $(\mathcal{U} \circ \mathcal{V}) \circ \mathcal{W} \leq \mathcal{U} \circ(\mathcal{V} \circ \mathcal{W})$.
Similarly, $(\mathcal{U} \circ \mathcal{V}) \circ \mathcal{W} \geq \mathcal{U} \circ(\mathcal{V} \circ \mathcal{W})$.
(9)

$$
\begin{aligned}
& \left(\mathcal{U}_{1} \circ \mathcal{U}_{2}\right)(u \circ v) \odot\left(\mathcal{V}_{1} \circ \mathcal{V}_{2}\right)(u \circ v) \\
& \leq\left(\mathcal{U}_{1}(u) \odot \mathcal{U}_{2}(v)\right) \odot\left(\mathcal{V}_{1}(u) \odot \mathcal{V}_{2}(v)\right) \\
& \leq\left(\mathcal{U}_{1}(u) \odot \mathcal{V}_{1}(u)\right) \odot\left(\mathcal{U}_{2}(v) \odot \mathcal{V}_{2}(v)\right) \\
& \leq\left(\left(\mathcal{U}_{1} \odot \mathcal{V}_{1}\right) \circ\left(\mathcal{U}_{2} \odot \mathcal{V}_{2}\right)\right)(u \circ v)
\end{aligned}
$$

Hence $\left(\mathcal{U}_{1} \circ \mathcal{U}_{2}\right) \odot\left(\mathcal{V}_{1} \circ \mathcal{V}_{2}\right) \leq\left(\mathcal{U}_{1} \odot \mathcal{V}_{1}\right) \circ\left(\mathcal{U}_{2} \odot \mathcal{V}_{2}\right)$.

Example 2.2. Let $X=\{a, b, c\}$ be a set, $L=[0,1]$ the stsc-quantale with $a \odot b=(a+b-1) \vee 0$ and $u, v \in[0,1]^{X \times X}$ defined as follows:

$$
\begin{gathered}
u(a, a)=u(b, b)=u(c, c)=1, u(a, b)=u(a, c)=0.6 \\
u(b, a)=u(c, a)=0.5, u(b, c)=u(c, b)=0.4 \\
v(a, a)=v(b, b)=1, v(c, c)=0.7, v(a, b)=v(b, a)=0.6 \\
v(a, c)=v(c, a)=0.5, v(b, c)=v(c, b)=0.4
\end{gathered}
$$

Define $[0,1]$-filters as $\mathcal{U}, \mathcal{V}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
& \mathcal{U}(w)= \begin{cases}1, & \text { if } w=1_{X \times X}, \\
0.6, & \text { if } u \leq w \neq 1_{X \times X}, \\
0.3, & \text { if } u \odot u \leq w \nsupseteq u, \\
0, & \text { otherwise. }\end{cases} \\
& \mathcal{V}(w)= \begin{cases}1, & \text { if } w \geq 1_{\triangle} \\
0.6, & \text { if } v \leq w \nsupseteq 1_{\triangle}, \\
0.3, & \text { if } v \odot v \leq w \nsupseteq v, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

(1) Since $u \circ u=u$, we obtain

$$
\begin{aligned}
& (\mathcal{U} \circ \mathcal{U})(w)= \begin{cases}1, & \text { if } w=\overline{1} \\
0.2, & \text { if } u \leq w \neq \overline{1} \\
0, & \text { otherwise }\end{cases} \\
& (\mathcal{U} \odot \mathcal{U})(w)= \begin{cases}1, & \text { if } w=\overline{1} \\
0.2, & \text { if } u \leq w \neq \overline{1}, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(2) Since $v \circ 1_{\triangle}=v$, we obtain $\mathcal{V} \circ \mathcal{V}=\mathcal{V}$ and

$$
(\mathcal{V} \odot \mathcal{V})(w)= \begin{cases}1, & \text { if } w \geq 1 \triangle \\ 0.2, & \text { if } v \leq w \nsupseteq 1 \triangle, \\ 0, & \text { otherwise }\end{cases}
$$

(3) We obtain $[0,1]$-filter as $\mathcal{U} \circ \mathcal{V}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\mathcal{U} \circ \mathcal{V}(w)= \begin{cases}1, & \text { if } w=\overline{1} \\ 0.6, & \text { if } u \leq w \neq \overline{1} \\ 0.3, & \text { if } u \odot u \leq w \nsupseteq u, \\ 0.2, & \text { if } u \circ v \leq w \nsupseteq u \odot u, \\ 0, & \text { otherwise. }\end{cases}
$$

$$
\mathcal{V} \circ \mathcal{U}(w)= \begin{cases}1, & \text { if } w=\overline{1} \\ 0.6, & \text { if } v \leq w \neq \overline{1} \\ 0.2, & \text { if } v \circ u \leq w \nsupseteq u, \\ 0, & \text { otherwise. }\end{cases}
$$

$$
(\mathcal{U} \odot \mathcal{V})(w)= \begin{cases}1, & \text { if } w=\overline{1} \\ 0.6, & \text { if } u \leq w \neq \overline{1}, \\ 0.3, & \text { if } u \odot u \leq w \nsupseteq u, \\ 0, & \text { otherwise }\end{cases}
$$

(4) $(\mathcal{U} \odot \mathcal{U}) \circ(\mathcal{V} \odot \mathcal{V})=(\mathcal{U} \circ \mathcal{V}) \odot(\mathcal{U} \circ \mathcal{V})$ as follows:
$((\mathcal{U} \odot \mathcal{U}) \circ(\mathcal{V} \odot \mathcal{V}))(w)= \begin{cases}1, & \text { if } w=\overline{1} \\ 0.2, & \text { if } u \leq w \neq \overline{1}, \\ 0, & \text { otherwise } .\end{cases}$
$(\mathcal{U} \odot \mathcal{V}) \circ(\mathcal{U} \odot \mathcal{V})=(\mathcal{U} \circ \mathcal{U}) \odot(\mathcal{V} \circ \mathcal{V})$ as follows:

$$
(\mathcal{U} \circ \mathcal{U}) \odot(\mathcal{V} \circ \mathcal{V})(w)= \begin{cases}1, & \text { if } w=\overline{1} \\ 0.2, & \text { if } u \leq w \neq \overline{1} \\ 0, & \text { otherwise }\end{cases}
$$

3. The Properties of (L, \odot)-quasi-uniform Structures

Definition 3.1. [6] $\operatorname{An}(L, \odot)$-filter \mathcal{U} on $X \times X$ is called an (L, \odot)-quasi-uniform structure on X if it satisfies the following conditions:
$(\mathrm{QU} 1) \mathcal{U} \leq[\Delta]$,
(QU2) $\mathcal{U} \leq \mathcal{U} \circ \mathcal{U}$ where $\mathcal{U} \circ \mathcal{U} \in F_{\odot}(X \times X)$.
The pair (X, \mathcal{U}) is called an (L, \odot)-quasi-uniform space. An (L, \odot)-quasi-uniform structure on X is called an (L, \odot)-uniform structure if $\mathcal{U}=\mathcal{U}^{-1}$.

Let (X, \mathcal{U}) and (Y, \mathcal{V}) be (L, \odot) quasi-uniform spaces. A map $\psi:(X, \mathcal{U}) \rightarrow(Y, \mathcal{V})$ is called quasi-uniformly continuous if for $v \in L^{Y \times Y}, \mathcal{V}(v) \leq \mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)$.

Example 3.2. (1) Let X be a set. Define $[\Delta](u)=$ $\bigwedge[(x, x)](u)$ for all $u \in L^{X \times X}$. By Theorem 2.1(5), $[\Delta]$ is an (L, \odot)-uniformity on X.
(2) Let $X,([0,1], \odot), \mathcal{U}$ and \mathcal{V} be given as in Example 2.2. Since $\mathcal{U} \notin \mathcal{U} \circ \mathcal{U}, \mathcal{U}$ is not an (L, \odot)-quasi-uniformity on X. Since $\mathcal{V}=\mathcal{V} \circ \mathcal{V}$ and $\mathcal{V} \leq[\Delta], \mathcal{V}$ is an (L, \odot)-quasiuniformity on X.

Theorem 3.3. Let (X, \mathcal{U}) be an (L, \odot)-quasi-uniform space. We define a map $N^{\mathcal{U}}: X \rightarrow L^{L^{X}}$ as follows:
$N^{\mathcal{U}}(x)(f)=N_{x}^{\mathcal{U}}(f)=\bigvee\{\alpha \odot \mathcal{U}(u) \mid \alpha \odot u(x,-) \leq f\}$.
Then $N^{\mathcal{U}}$ is an (L, \odot)-neighborhood system on X.

Proof. (F1) Since $\mathcal{U} \leq[\triangle]$, for $\alpha \odot u(x,-) \leq \overline{0}$, we have $\alpha \odot \mathcal{U}(u) \leq \alpha \odot[\triangle] \leq \alpha \odot[(x, x)](u)=\overline{0}(x)=\perp$. Thus $N_{x}^{\mathcal{U}}(\overline{0})=\perp$. Moreover, $N_{x}^{\mathcal{U}}(\overline{1}) \geq \mathcal{U}(\overline{1})=\top$.
(F2)

$$
\begin{aligned}
& N_{x}^{\mathcal{U}}(f) \odot N_{x}^{\mathcal{U}}(g) \\
& =\bigvee\left\{\alpha \odot \mathcal{U}\left(u_{1}\right) \mid \alpha \odot u_{1}(x,-) \leq f\right\} \odot \\
& \bigvee\left\{\beta \odot \mathcal{U}\left(u_{2}\right) \mid \beta \odot u_{2}(x,-) \leq g\right\} \\
& \leq \bigvee\left\{\alpha \odot \beta \odot \mathcal{U}\left(u_{1} \odot u_{2}\right) \mid \alpha \odot \beta\right. \\
& \left.\odot u_{1}(x,-) \odot u_{2}(x,-) \leq f \odot g\right\} \\
& =N_{x}^{\mathcal{U}}(f \odot g) .
\end{aligned}
$$

(F3) is trivial.
(N1)

$$
\begin{aligned}
N_{x}^{\mathcal{U}}(f) & =\bigvee\{\alpha \odot \mathcal{U}(u) \mid \alpha \odot u(x,-) \leq f\} \\
& \leq \bigvee\{\alpha \odot[\triangle](u) \mid \alpha \odot u(x,-) \leq f\} \\
& \leq f(x)
\end{aligned}
$$

(N2)

$$
\begin{aligned}
& N_{x}^{\mathcal{U}}(f) \\
& =\bigvee\{\alpha \odot \mathcal{U}(u) \mid \alpha \odot u(x,-) \leq f\}\} \\
& \leq \bigvee\left\{\alpha \odot \mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right) \mid\right. \\
& \left.\alpha \odot\left(u_{2} \circ u_{1}(x,-)\right) \leq \alpha \odot u(x,-) \leq f\right\} .
\end{aligned}
$$

For $\alpha \odot u_{2}(y, x) \odot u_{1}(x,-) \leq \alpha \odot u(y,-) \leq f, g(y)=$ $\alpha \odot u_{2}(y, x) \odot \mathcal{U}\left(u_{1}\right) \leq \alpha \odot \mathcal{U}(u) \leq N_{y}^{\mathcal{U}}(f)$

$$
\begin{aligned}
& N_{x}^{\mathcal{U}}(f) \\
& \leq \bigvee\left\{\alpha \odot \mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right) \mid\right. \\
& \left.\alpha \odot\left(u_{2} \circ u_{1}(x,-)\right) \leq \alpha \odot u(x,-) \leq f\right\} . \\
& \leq \bigvee\left\{\alpha \odot \mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right) \mid g(y) \leq N_{y}^{\mathcal{U}}(f)\right\} \\
& =\bigvee\left\{N_{x}^{\mathcal{U}}(g) \mid g(y) \leq N_{y}^{\mathcal{U}}(f)\right\} .
\end{aligned}
$$

Theorem 3.4. Let (X, \mathcal{U}) be an (L, \odot)-quasi-uniform space and $N^{\mathcal{U}}=\left\{N_{x}^{\mathcal{U}} \mid x \in X\right\}$ be an (L, \odot) neighborhood system on X. We define a map $\tau_{U}: L^{X} \rightarrow$ L as follows:

$$
\tau_{U}(f)=\bigwedge_{x \in X}\left(f(x) \rightarrow N_{x}^{\mathcal{U}}(f)\right)
$$

Then (1) τ_{U} is an (L, \odot)-topology.
(2) If $N_{x}^{\mathcal{U}}$ is a stratified (L, \odot)-filter, then τ_{U} is an enriched (L, \odot)-topology.
Proof. (1) (O1)

$$
\begin{aligned}
& \tau_{U}(0)=\bigwedge_{x \in X}\left(\overline{0}(x) \rightarrow N_{x}^{u}(\overline{0})\right)=1 \\
& \tau_{U}(1)=\bigwedge_{x \in X}\left(\overline{1}(x) \rightarrow N_{x}^{u}(\overline{1})\right)=1
\end{aligned}
$$

(O2)

$$
\begin{aligned}
& \tau_{U}(f \odot g) \\
& =\bigwedge_{x \in X}\left((f \odot g)(x) \rightarrow N_{x}^{\mathcal{U}}(f \odot g)\right) \\
& \geq \bigwedge_{x \in X}\left((f(x) \odot g(x)) \rightarrow N_{x}^{\mathcal{U}}(f) \odot N_{x}^{\mathcal{U}}(g)\right) \\
& \\
& \quad \text { by Lemma 1.2.(5)) } \\
& \geq \bigwedge_{x \in X}\left(\left(f(x) \rightarrow N_{x}^{u}(f)\right) \odot\left(g(x) \rightarrow N_{x}^{\mathcal{U}}(g)\right)\right) \\
& \geq \bigwedge_{x \in X}\left(f(x) \rightarrow N_{x}^{\mathcal{u}}(f)\right) \odot \bigwedge_{x \in X}\left(g(x) \rightarrow N_{x}^{u}(g)\right) \\
& \geq \tau_{U}(f) \odot \tau_{U}(g) .
\end{aligned}
$$

(O3)

$$
\begin{aligned}
\tau_{U}\left(\bigvee_{i} f_{i}\right) & =\bigwedge_{x \in X}\left(\left(\bigvee_{i} f_{i}(x) \rightarrow N_{x}^{\mathcal{U}}\left(\bigvee_{i} f_{i}\right)\right)\right. \\
& \geq \bigwedge_{x \in X}\left(\left(\bigvee_{i} f_{i}(x) \rightarrow \bigvee_{i} N_{x}^{U}\left(f_{i}\right)\right)\right.
\end{aligned}
$$ (by Lemma 1.2.(9)) $\geq \bigwedge_{x \in X} \bigwedge_{i}\left(f_{i}(x) \rightarrow N_{x}^{\mathcal{U}}\left(f_{i}\right)\right)$ $\geq \bigwedge_{i} \bigwedge_{x \in X}\left(f_{i}(x) \rightarrow N_{x}^{\mathcal{U}}\left(f_{i}\right)\right)$ $=\bigwedge_{i} \tau_{U}\left(f_{i}\right)$

$$
\begin{equation*}
\tau_{U}(\alpha \odot f)=\bigwedge_{x \in X}\left(\alpha \odot f(x) \rightarrow N_{x}^{\mathcal{U}}(\alpha \odot f)\right) \tag{2}
\end{equation*}
$$

$$
\geq \bigwedge_{x \in X}\left((\alpha \odot f(x)) \rightarrow\left(\alpha \odot N_{x}^{U}(f)\right)\right)
$$

$\geq \bigwedge_{x \in X}\left(f(x) \rightarrow N_{x}^{\mathcal{U}}(f)\right)$ (by Lemma 1.2.(6)) $\geq \tau_{U}(f)$.

Example 3.5. Let $X=\{x, y, z\}$ be a set, $(L=[0,1], \odot)$ the stsc-quantale with $a \odot b=(a+b-1) \vee 0$ and let $e \in[0,1]^{X \times X}$ defined as

$$
\begin{gathered}
v(x, x)=1, v(x, y)=0.6, v(x, z)=0.5 \\
v(y, x)=0.5, v(y, y)=1, v(y, z)=0.6 \\
v(z, x)=0.6, v(z, y)=0.4, v(z, z)=0.4
\end{gathered}
$$

We define a $([0,1], \odot)$-quasi-uniformity $\mathcal{U}:[0,1]^{X \times X} \rightarrow$ $[0,1]$ as follows:

$$
\mathcal{U}(w)= \begin{cases}1, & \text { if } w \geq 1 \Delta, \\ 0.6, & \text { if } v \leq w \nsupseteq 1_{\triangle}, \\ 0.3, & \text { if } v \odot v \leq w \nsupseteq v, \\ 0, & \text { otherwise. }\end{cases}
$$

For $x \in\{x, y, z\}$, we obtain $([0,1], \odot)$-neighborhood filters $N_{x}^{\mathcal{U}}:[0,1]^{X} \rightarrow[0,1]$ as follows:

$$
\begin{gathered}
N_{x}^{\mathcal{U}}(f)= \begin{cases}\alpha, & \text { if } f \geq \alpha \cdot g_{1}, \\
0, & \text { otherwise. }\end{cases} \\
N_{y}^{\mathcal{U}}(f)= \begin{cases}\alpha, & \text { if } f \geq \alpha \cdot g_{2}, \\
0, & \text { otherwise. }\end{cases} \\
N_{z}^{\mathcal{U}}(f)= \begin{cases}\alpha, & \text { if } f \geq \alpha \cdot g_{3}, \\
0.6 \cdot \beta, & \text { if } \beta \cdot g_{4} \leq f \nsupseteq \alpha \cdot g_{3}, \\
0.3 \cdot \gamma, & \text { if } \gamma \cdot g_{5} \leq f \nsupseteq \beta \cdot g_{4}, \\
0, & \text { otherwise }\end{cases} \\
g_{1}(x)=1, g_{1}(y)=0, g_{1}(z)=0, \\
g_{2}(x)=0, g_{2}(y)=1, g_{1}(z)=0, \\
g_{3}(x)=0, g_{3}(y)=0, g_{3}(z)=0.4, \\
g_{4}(x)=0.6, g_{4}(y)=0.4, g_{4}(z)=0.4, \\
g_{5}(x)=0.2, g_{5}(y)=0, g_{5}(z)=0 .
\end{gathered}
$$

Theorem 3.6. Let (X, \mathcal{U}) and (Y, \mathcal{V}) be (L, \odot) quasiuniform spaces. If a map $\psi:(X, \mathcal{U}) \rightarrow(Y, \mathcal{V})$ is quasi-uniformly continuous, then a map $\psi:\left(X, N_{x}^{\mathcal{U}}\right) \rightarrow$ $\left(Y, N_{\psi(x)}^{\mathcal{V}}\right)$ is an (L, \odot)-filter map and a map ψ : $\left(X, \tau_{U}\right) \rightarrow\left(Y, \tau_{V}\right)$ is $L F$-continuous.

Proof.

$$
\begin{aligned}
& N_{\psi(x)}^{\mathcal{V}}(f)=\bigvee\{\alpha \odot \mathcal{V}(v) \mid \alpha \odot v(\psi(x), \psi(y)) \leq f(\psi(y))\} \\
& \leq \bigvee\left\{\alpha \odot \mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right. \\
&\left.\mid \alpha \odot(\psi \times \psi)^{\leftarrow}(v)(x, y) \leq \psi^{\leftarrow}(f)(y)\right\} \\
& \leq N_{x}^{\mathcal{U}}\left(\psi^{\leftarrow}(f)\right) . \\
& \tau_{V}(g) \rightarrow \tau_{U}\left(\psi^{\leftarrow}(g)\right) \\
& \geq \bigwedge_{y \in Y}\left(g(y) \rightarrow N_{y}^{\mathcal{V}}(g)\right) \\
& \rightarrow \bigwedge_{x \in X}\left(\psi^{\leftarrow}(g)(x) \rightarrow N_{x}^{\mathcal{U}}\left(\psi^{\leftarrow}(g)\right)\right. \\
& \geq \bigwedge_{x \in X}\left(\psi^{\leftarrow}(g)(x) \rightarrow N_{\psi}^{\mathcal{V}}(x)(g)\right) \rightarrow \\
& \bigwedge_{x \in X}\left(\psi^{\leftarrow}(g)(x) \rightarrow N_{x}^{\mathcal{U}}\left(\psi^{\leftarrow}(g)\right)\right) \\
& \geq\left(\psi^{\leftarrow}(g)(x) \rightarrow N_{\psi(x)}^{\mathcal{V}}(g)\right) \rightarrow \\
&\left(\psi^{\leftarrow}(g)(x) \rightarrow N_{x}^{\mathcal{U}}\left(\psi^{\leftarrow}(g)\right)\right)(\text { by Lemma 1.2.(8)) } \\
& \geq\left.N_{\psi(x)}^{\mathcal{V}}(g) \rightarrow N_{x}^{\mathcal{U}}\left(\psi^{\leftarrow}(g)\right) . \text { (by Lemma 1.2.(7)) }\right)
\end{aligned}
$$

Theorem 3.7. Let \mathcal{U}_{i} and \mathcal{V}_{i} be families of (L, \odot)-quasiuniformities satisfying the condition $\mathcal{U}_{1}(u) \odot \mathcal{U}_{2}(v)=\perp$ for each $u \odot v=\perp$. We define $\mathcal{U}_{1} \oplus \mathcal{U}_{2} \in F_{\odot}(X \times X)$ as follows:
$\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right)(w)=\bigvee\left\{\mathcal{U}_{1}(u) \odot \mathcal{U}_{2}(v) \mid u \odot v \leq w\right\}$.
(1) \mathcal{U}_{1}^{-1} is an (L, \odot)-uniformity on X.
(2) $\left(\mathcal{U}_{1} \circ \mathcal{U}_{2}\right) \oplus\left(\mathcal{V}_{1} \circ \mathcal{V}_{2}\right) \leq\left(\mathcal{U}_{1} \oplus \mathcal{V}_{1}\right) \circ\left(\mathcal{U}_{2} \oplus \mathcal{V}_{2}\right)$
(3) $\mathcal{U}_{1} \oplus \mathcal{U}_{2}$ is the coarsest (L, \odot)-uniformities on X
which is finer than \mathcal{U}_{1} and \mathcal{U}_{2}. Moreover, if $\mathcal{U}_{1}=\mathcal{U}_{2}$, then $\mathcal{U}_{1} \oplus \mathcal{U}_{1}=\mathcal{U}_{1}$.
(4) $\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right)^{-1}=\mathcal{U}_{1}^{-1} \oplus \mathcal{U}_{2}^{-1}$.
(5) $\mathcal{U}_{1} \oplus \mathcal{U}_{1}^{-1}$ is the coarsest (L, \odot)-uniformities on X which is finer than \mathcal{U}_{1} and \mathcal{U}_{1}^{-1}.
(6) $\mathcal{N}_{x}^{\mathcal{U}_{1}} \oplus \mathcal{N}_{x}^{\mathcal{U}_{2}} \leq \mathcal{N}_{x}^{\mathcal{U}_{1} \oplus \mathcal{U}_{2}}$.

Proof. (1) Since $\mathcal{U}_{1} \leq \mathcal{U}_{1} \circ \mathcal{U}_{1}$, we have $\mathcal{U}_{1}^{-1} \leq \mathcal{U}_{1}^{-1} \circ \mathcal{U}_{1}^{-1}$. Other cases are easily proved.
(2) Since $\left(u_{1} \odot v_{1}\right) \circ\left(u_{2} \odot v_{2}\right) \leq\left(u_{1} \circ u_{2}\right) \odot\left(v_{1} \circ v_{2}\right)$, for all $u \odot v \leq w$, we have

$$
\begin{aligned}
& \left(\mathcal{U}_{1} \circ \mathcal{U}_{2}\right)(u) \odot\left(\mathcal{V}_{1} \circ \mathcal{V}_{2}\right)(v) \\
& =\bigvee\left\{\mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{U}_{2}\left(u_{2}\right) \mid u_{1} \circ u_{2} \leq u\right\} \\
& \odot \bigvee\left\{\mathcal{V}_{1}\left(v_{1}\right) \odot \mathcal{V}_{2}\left(v_{2}\right) \mid v_{1} \circ v_{2} \leq v\right\} \\
& =\bigvee\left\{\left(\mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{U}_{2}\left(u_{2}\right)\right) \odot\left(\mathcal{V}_{1}\left(v_{1}\right) \odot \mathcal{V}_{2}\left(v_{2}\right)\right)\right. \\
& \left.\mid u_{1} \circ u_{2} \leq u, v_{1} \circ v_{2} \leq v\right\} \\
& \leq \bigvee\left\{\left(\mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{V}_{1}\left(v_{1}\right)\right) \odot\left(\mathcal{U}_{2}\left(u_{2}\right) \odot \mathcal{V}_{2}\left(v_{2}\right)\right)\right. \\
& \left.\mid\left(u_{1} \odot v_{1}\right) \circ\left(u_{2} \odot v_{2}\right) \leq u \odot v\right\} \\
& \leq \bigvee\left\{\left(\mathcal{U}_{1} \oplus \mathcal{V}_{1}\right)\left(u_{1} \odot v_{1}\right) \odot\left(\mathcal{U}_{2} \oplus \mathcal{V}_{2}\right)\left(u_{2} \odot v_{2}\right)\right. \\
& \left.\mid\left(u_{1} \odot v_{1}\right) \circ\left(u_{2} \odot v_{2}\right) \leq u \odot v\right\} \\
& \leq\left(\left(\mathcal{U}_{1} \oplus \mathcal{V}_{1}\right) \circ\left(\mathcal{U}_{2} \oplus \mathcal{V}_{2}\right)\right)(u \odot v) .
\end{aligned}
$$

It follows $\left(\mathcal{U}_{1} \circ \mathcal{U}_{2}\right) \oplus\left(\mathcal{V}_{1} \circ \mathcal{V}_{2}\right)(w) \leq\left(\mathcal{U}_{1} \oplus \mathcal{V}_{1}\right) \circ\left(\mathcal{U}_{2} \oplus\right.$ $\left.\mathcal{V}_{2}\right)(w)$ for all $w \in L^{X \times X}$.
(3)

$$
\begin{aligned}
& \left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right)(u) \odot\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right)(v) \\
& =\bigvee\left\{\mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{U}_{2}\left(u_{2}\right) \mid u_{1} \odot u_{2} \leq u\right\} \\
& \odot \bigvee\left\{\mathcal{U}_{1}\left(v_{1}\right) \odot \mathcal{U}_{2}\left(v_{2}\right) \mid v_{1} \odot v_{2} \leq v\right\} \\
& =\bigvee\left\{\left(\mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{U}_{2}\left(u_{2}\right)\right) \odot\left(\mathcal{U}_{1}\left(v_{1}\right) \odot \mathcal{U}_{2}\left(v_{2}\right)\right)\right. \\
& \left.\mid u_{1} \odot u_{2} \leq u, v_{1} \odot v_{2} \leq v\right\} \\
& \leq \bigvee\left\{\mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{U}_{1}\left(v_{1}\right)\right) \odot\left(\mathcal{U}_{2}\left(u_{2}\right) \odot \mathcal{U}_{2}\left(v_{2}\right)\right) \\
& \left.\mid u_{1} \odot u_{2} \leq u, v_{1} \odot v_{2} \leq v\right\} \\
& \leq \bigvee\left\{\mathcal{U}_{1}\left(u_{1} \odot v_{1}\right) \odot \mathcal{U}_{2}\left(u_{2} \odot v_{2}\right)\right. \\
& \left.\mid u_{1} \odot u_{2} \odot v_{1} \odot v_{2} \leq u \odot v\right\} \\
& \leq\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right)(u \odot v) .
\end{aligned}
$$

Since $\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right) \leq\left(\mathcal{U}_{1} \circ \mathcal{U}_{1}\right) \oplus\left(\mathcal{U}_{2} \circ \mathcal{U}_{2}\right) \leq\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right) \circ$ $\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right)$, the results hold.
(4) and (5) are easily proved.
(6)

$$
\begin{aligned}
& \left(\mathcal{N}_{x}^{\mathcal{U}_{1}} \oplus \mathcal{N}_{x}^{\mathcal{U}_{2}}\right)(h) \\
& =\bigvee_{f \odot g \leq h}\left(\mathcal{N}_{x}^{\mathcal{U}_{1}}(f) \odot \mathcal{N}_{x}^{\mathcal{U}_{2}}(g)\right) \\
& =\bigvee_{f \odot g \leq h}\left(\bigvee\left\{a_{1} \odot \mathcal{U}_{1}\left(u_{1}\right) \mid a_{1} \odot u_{1}(x,-) \leq f\right\}\right. \\
& \left.\odot \bigvee\left\{a_{2} \odot \mathcal{U}_{2}\left(u_{2}\right) \mid a_{2} \odot u_{2}(x,-) \leq g\right\}\right) \\
& \leq \bigvee_{f \odot g \leq h}\left(\bigvee \left\{a_{1} \odot a_{2} \odot \mathcal{U}_{1}\left(u_{1}\right) \odot \mathcal{U}_{2}\left(u_{2}\right)\right.\right. \\
& \left.\mid a_{1} \odot a_{2} \odot u_{1}(x,-) \odot u_{2}(x,-) \leq f \odot g\right\} \\
& \leq \mathcal{N}_{x}^{\mathcal{U}_{1} \oplus \mathcal{U}_{2}}(h) .
\end{aligned}
$$

Example 3.8. Let $X=\{a, b, c\}$ be a set, $L=[0,1]$ the stsc-quantale with $a \odot b=(a+b-1) \vee 0$ and $u, v \in[0,1]^{X \times X}$ defined as follows:
$u(a, a)=u(b, b)=0.6, u(c, c)=1, u(a, b)=u(a, c)=0.6$,

$$
u(b, a)=u(c, a)=0.5, u(b, c)=u(c, b)=0.4
$$

$v(a, a)=v(b, b)=1, v(c, c)=0.7, v(a, b)=0.7, v(a, c)=0.4$

$$
v(b, a)=v(c, a)=v(b, c)=0.6, v(c, b)=0.5
$$

Define $[0,1]$-filters as $\mathcal{U}, \mathcal{V}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
& \mathcal{U}(w)= \begin{cases}1, & \text { if } w \geq 1_{\triangle}, \\
0.5, & \text { if } u \leq w \nsupseteq 1_{\triangle}, \\
0, & \text { otherwise. }\end{cases} \\
& \mathcal{V}(w)= \begin{cases}1, & \text { if } w \geq 1_{\triangle}, \\
0.6, & \text { if } v \leq w \nsupseteq 1_{\triangle}, \\
0.3, & \text { if } v \odot v \leq w \nsupseteq v, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then \mathcal{U} and \mathcal{V} are (L, \odot)-quasi-uniformities on X.

We obtain $[0,1]$-filter $\mathcal{U} \oplus \mathcal{V}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:
$\mathcal{U} \oplus \mathcal{V}(w)= \begin{cases}1, & \text { if } w \geq 1 \triangle, \\ 0.6, & \text { if } v \leq w \nsupseteq 1_{\triangle}, \\ 0.5, & \text { if } u \leq w \nsupseteq 1_{\triangle}, w \nsupseteq v \\ 0.3, & \text { if } v \odot v \leq w \nsupseteq v, w \nsupseteq 1_{\triangle}, w \nsupseteq u \\ 0.1, & \text { if } v \odot w \leq w \nsupseteq v \odot v, \\ & w \nsupseteq 1_{\triangle}, w \nsupseteq u \\ 0, & \text { otherwise. }\end{cases}$
$\mathcal{V} \oplus \mathcal{V}^{-1}(w)= \begin{cases}1, & \text { if } w \geq 1_{\triangle}, \\ 0.6, & \text { if } v \leq w \nsupseteq 1_{\triangle} \text { or } v \leq w \nsupseteq 1_{\triangle} \\ 0.3, & \text { if } v \odot v \leq w \nsupseteq v, w \nsupseteq v^{-1} \\ & \text { or } v^{-1} \odot v^{-1} \leq w \nsupseteq v, w \nsupseteq v^{-1} \\ 0.2, & \text { if } v \odot v^{-1} \leq w \nsupseteq v \odot v, \\ & w \not v^{-1} \odot v v^{-1} \\ 0, & \text { otherwise. }\end{cases}$

REFERENCES

[1] A. Craig, G. Jäger, " A common framework for latticevalued uniform spaces and probabilistic uniform limit spaces", Fuzzy Sets and Systems, vol. 158, pp. 424-435, 2007.
[2] J. Gutiérrez García, M. A. de Prade Vicente, A.P. Šostak, A unified approach to the concept of fuzzy L-uniform spaces, Chapter 3 in [11], pp. 81-114.
[3] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995.
[4] U. Höhle, S. E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht, 1999.
[5] B. Hutton, "Uniformities on fuzzy topological spaces," J. Math. Anal. Appl., vol. 58, pp. 559-571, 1977.
[6] U.Höhle, A.P.Sostak, Axiomatic foundation of fixedbasis fuzzy topology, Chapter 3 in [4], 123-272.
[7] Y.C. Kim, Y.S. Kim, " (L, \odot)-approximation spaces and (L, \odot)-fuzzy quasi-uniform spaces," Information Sciences, vol. 179, pp.2028-2048, 2009.
[8] W. Kotzé, Uniform spaces, Chapter 8 in [4], pp. 553580.
[9] Liu Ying-Ming, Luo Mao-Kang, Fuzzy topology, World Scientific Publishing Co., Singapore, 1997.
[10] C.J. Mulvey, Quantales, Suppl. Rend. Cric. Mat. Palermo Ser.II 12, pp. 99-104, 1986.
[11] S. E. Rodabaugh, E. P. Klement, Topological And Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London), 2003.
[12] D. Zhang, "A comparison of various uniformities in fuzzy topology," Fuzzy Sets and Systems, vol. 159, pp. 2503-2519, 2008.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in Department of Mathematics, Kangnung University. His research interests are fuzzy logic and fuzzy topology.

Jung Mi Ko

She received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1983 and 1988, respectively. From 1988 to present, she is a professor in Department of Mathematics, Kangnung University. Her research interests are fuzzy logic.

