초록
데이터 마이닝(Data Mining)은 수집된 데이터로 부터 감춰진 패턴을 찾는 작업이다. 여기에서 수집된 데이터는 예측 및 추천을 위한 기반 정보로 중요한 역할을 하며, 분석 결과의 성능을 향상시키기 위해 잘못된(Missing value) 데이터를 선별하는 과정을 필요로 한다. 수집한 데이터에서 의도하지 못한 데이터를 선별하기 위한 기존의 방법은 주로 통계적이거나 단순 거리(Distance)에 기반을 둔 방법을 이용하였다. 하지만 환경 및 데이터의 특성을 고려하지 못하여, 의미 있는 데이터도 함께 분석에서 제외 될 수 있는 문제점을 가지고 있다. 본 논문은 인간의 경험적 지식을 수집된 데이터와 비교하여 가중치로 변환하고, 의사결정트리(Decision Tree)의 생성에 이용한다. 생성된 트리는 인간의 지식이 반영되어 기존의 분석 방법보다 신뢰성이 높다고 할 수 있으며, 실험을 통하여 제안하는 방법의 유효성을 확인하였다.
Data mining is the process of extracting hidden patterns from collected data. At this time, for collected data which take important role as the basic information for prediction and recommendation, the process to discriminate incorrect data in order to enhance the performance of analysis result, is needed. The existing methods to discriminate unexpected data from collected data, mainly relies on methods which are based on statistics or simple distance between data. However, for these methods, the problematic point that even meaningful data could be excluded from analysis due that the environment and characteristic of the relevant data are not considered, exists. This study proposes a method to endow human heuristic knowledge with weight value through the comparison between collected data and human heuristic knowledge, and to use the value for creating a decision tree. The data discrimination by the method proposed is more credible as human knowledge is reflected in the created tree. The validity of the proposed method is verified through an experiment.