초록
본 논문은 비선형 특성을 내재한 물 수요예측을 위하여 기존의 시계열 자기회귀 알고리즘과 다층신경망 학습방법을 결합한 단기 물 수요 예측 알고리즘을 개발하였다. 제시된 방법을 검증하기 위한 사례연구로 2007년도와 2008년도 전북지역의 광역상수도 A정수장에서 취득된 데이터를 활용하여 알고리즘 구축 및 제안 방법의 정확도를 분석하였다. 실험 결과 다중회귀모델은 MAPE가 5.1%, AR모델은 3.8%, 제안된 방법인 AR+MLP 모델은 3.6%로 나타나 성능이 우수한 것으로 나타났다. 따라서 제안된 방법을 사용할 경우 정수장에서 단기 물 수요예측에 유용하게 활용할 수 있음을 보였다.
In this paper, we develope a water demand forecasting algorithm using AR(Auto-regressive) and MLP(Multi-layer perceptron). To show effectiveness of the proposed method, we analyzed characteristics of time-series data collected in "A" purification plant at Jeon-Buk province during 2007-2008, and then performed the proposed method with various input factors selected through various analyses. As noted in experimental results, the performance of three types model such as multi-regressive, AR(Auto-regressive), and AR+MLP(Auto-regressive + Multi-layer perceptron) show 5.1%, 3.8%, and 3.6% with respect to MAPE(Mean Absolute Percentage Error), respectively. Thus, it is noted that the proposed method can be used to predict short-term water demand for the efficient operation of a water purification plant.