DOI QR코드

DOI QR Code

퍼지 모델에 기초한 시계열 주가 예측

Time Series Stock Prices Prediction Based On Fuzzy Model

  • 투고 : 2009.05.08
  • 심사 : 2009.09.20
  • 발행 : 2009.10.25

초록

본 논문은 일별 및 주별로 시계열 주가를 예측할 수 있는 퍼지 모델을 구성하는 방법을 제안한다. 전통적인 시계열 분석으로 주가를 예측하는 것은 어렵지만 퍼지 모델은 비선형적인 주가 데이터의 특성을 잘 기술할 수 있는 장점을 갖고 있다. 주가 예측 모델에 사용될 입력 정보를 결정하는 데는 상당한 수고가 필요한데, 본 논문에서는 전통적인 캔들 스틱 차트의 정보를 입력변수로 고려한다. 주가 예측 퍼지 모델은 사다리꼴 멤버쉽함수를 갖는 전건부와 비선형식인 후건부로 된 퍼지 규칙으로 구성된다. 차분 진화를 통해 퍼지 모델은 최적화된다. 일별 및 주별로 코스피 지수의 시가, 고가, 저가 및 종가를 예측하는 모델을 만들고 그 성능을 평가한다.

In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

키워드

참고문헌

  1. R. G. Palmer, W. B. Arthur, J. H. Holland, and B. Le Baron, 'An Artificial Stock Market', Artificial Life and Robotics, Vol. 3, 1998
  2. B. M. Louis, Trend forecasting with technical analysis, Marketplace BOOKS, 2000
  3. S. M. Kendall and K. Ord, Time Series, Oxford, 1997
  4. L. C. H. Leon, A. Liu and W. S. Chen, 'Pattern discovery of fuzzy time series for financial prediction', IEEE Trans. Knowledge and Data Engineering, Vol. 18, No. 5, pp. 613-625, 2006 https://doi.org/10.1109/TKDE.2006.80
  5. D .R. Jobman, The handbook of technical analysis, Chicago, Illinois: Probus pubiishing, 1995
  6. K. H. Lee and G. S. Jo, 'Expert system for predicting stock market timing using a candlestick chart', Expert System With Applications, Vol. 16, pp. 357-364, 1999 https://doi.org/10.1016/S0957-4174(99)00011-1
  7. T. J. Beckman, 'Stock Market Forecasting Using Technical Analysis', The World Congress on Expert System Proc., pp.2512-2519, 1991
  8. K. Nygren, Stock Prediction: A neural network approach, Master Thesis, Royal Institute of Technology, KTH, March, 2004
  9. Y. Tang, F. Xu, X. Wan and Y. Q. Zhang, 'Web-based fuzzy neural networks for stock prediction', Computational Intelligence and Applications, pp. 169-174, 2002
  10. G. Armano, M. Marchesi and A. Murru, 'A hybrid genetic-neural architecture for stock indexes forecasting', Inforamtion Sciences, Vol. 170, No. 1, pp. 3-33, 2005 https://doi.org/10.1016/j.ins.2003.03.023
  11. P. C. Chang and C. H. Liua, 'A TSK type fuzzy based system for stock price prediction', Expert Systems with Applications, Vol. 34, No. 1, pp. 135-144, 2008 https://doi.org/10.1016/j.eswa.2006.08.020
  12. M. H. Zarandi, E. Neshat, I. B. Turksen and B. Rezaee, 'A type-2 fuzzy model for stock market analysis', Fuzzy System Conf., FUZZ-IEEE, pp. 1-6, July 2007
  13. J. L. Wanga and S. H. Chanb, 'Stock market trading rule discovery using two-layer bias decision tree', Expert Systems with Applications, Vol. 30, No. 4, pp. 605-611, May 2006 https://doi.org/10.1016/j.eswa.2005.07.006
  14. Fan and M. Palaniswami, 'Stock selection using support vector machines', Proceedings IJCNN 2001, Vol.3, pp. 1793-1798, 2001
  15. M. Noor and R. H. Khokhar, 'Fuzzy Decision Tree for Data Mining of Time Series Stock Market Databases', Critical Assessment of Mocroarray Data Analysis Conference, November 11-12, 2004
  16. P. Giudici, Applied Data Mining, Statistical Methods for Business and Industry, Wiley, 2003
  17. M. Sugeno and T. Yasukawa, 'A fuzzy logic based approach to qualitative modeling', IEEE Trans. Fuzzy Syst., Vol. 1, No. 1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
  18. T. Takagi and M. Sugeno, 'Fuzzy identification of systems and its application to modeling and control', IEEE Trans. Syst. Man. Cybern., Vol. 15, pp. 116-132, 1985
  19. H. S. Hwang, 'Automatic design of fuzzy rule base for modeling and control using evolutionary programming', IEEE Proc-Control Theory Appl., Vol. 146, No. 1, pp. 9-16, 1996 https://doi.org/10.1049/ip-cta:19990087
  20. S. J. Kang, C. H. Woo, H. S. Hwang and K. B. Woo, 'Evolutionary design of fuzzy rule base for nonlinear system modeling and control', IEEE Trans. Fuzzy Systems, Vol. 8, No. 1, pp. 37-44, 2000 https://doi.org/10.1109/91.824766
  21. R. Storn, 'Differential evolution, a simple and efficient heuristic strategy for global optimization over continuous spaces', Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359, 1997 https://doi.org/10.1023/A:1008202821328