초록
실시간 시스템 적용에 있어서, 수동 소나 표적의 식별을 위한 특징정보 추출 및 스코어링 알고리즘은 다음과 같은 문제점들을 가지고 있다. 즉, 주파수 스펙트럼으로부터 PSR(Propeller Shaft Rate) 및 BR(Blade rate) 등의 특징정보를 실시간으로 구별하는 것은 매우 어렵기 때문에 정확하고 효율적인 특징정보 추출(extraction)법을 요구한다. 또한, 추출된 특징정보들로 구성된 식별 DB(DataBase)는 잡음 및 불완전한 구성을 갖기 때문에 강인하고 효과적인 특징정보 스코어링(scoring)법을 요구한다. 나아가, 구조와 파라메터에 있어서 용이한 설계 절차를 요구한다. 이러한 문제들을 해결하기 위해서 진화 전략(ES : Evolution Strategy) 및 퍼지(fuzzy) 이론을 이용하는 지능형 특징정보 추출 및 스코어링 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해서는 수동 소나 표적의 실시간 식별이 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실시간 시스템 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.
In real-time system application, the feature extraction and scoring algorithm for classification of the passive sonar target has the following problems: it requires an accurate and efficient feature extraction method because it is very difficult to distinguish the features of the propeller shaft rate (PSR) and the blade rate (BR) from the frequency spectrum in real-time, it requires a robust and effective feature scoring method because the classification database (DB) composed of extracted features is noised and incomplete, and further, it requires an easy design procedure in terms of structures and parameters. To solve these problems, an intelligent feature extraction and scoring algorithm using the evolution strategy (ES) and the fuzzy theory is proposed here. To verify the performance of the proposed algorithm, a passive sonar target classification is performed in real-time. Simulation results show that the proposed algorithm effectively solves sonar classification problems in real-time.