DOI QR코드

DOI QR Code

An H Output Feedback Control for Uncertain Singularly Perturbed T-S Fuzzy Systems

  • Yoo, Seog-Hwan (Department of Electronic Engineering, Daegu University) ;
  • Wu, Xue-Dong (Department of Electronic Engineering, Daegu University)
  • 류석환 (대구대학교 대학원 전자공학과) ;
  • 오설동 (대구대학교 대학원 전자공학과)
  • Received : 2009.10.21
  • Accepted : 2009.12.05
  • Published : 2009.12.25

Abstract

This paper deals with an $H_{\infty}$ output feedback controller design for uncertain singularly perturbed T-S fuzzy systems. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. It is shown that the $H_{\infty}$ norm of the uncertain singularly perturbed fuzzy system is less than $\gamma$ for a sufficiently small $\varepsilon$ > 0 if the $H_{\infty}$ norms of both the slow and fast subsystem are less than $\gamma$. Using this fact, we develop a linear matrix inequality based design method which is independent of the singular perturbation parameter $\varepsilon$. A numerical example is provided to demonstrate the efficacy of the proposed design method.

Keywords

References

  1. V. Sakensa, J. O'reilly and P. Kokotovic, 'Singular Perturbations and Time Scale Methods in Control Theory: Survey 1976-1983', Automatica, Vol. 20, No.3, pp. 273-293, May 1984
  2. P. Sannuti and P. Kokotovic, 'Near Optimum Design of Linear Systems by a Singular Perturbation Method ', IEEE Trans. on Automatic Control, Vol. AC-14, No. 1, pp. 15-21, 1969
  3. P. Kokotovic, R. Khalil and J. O'Reilly, 'Singular perturbation Methods in Control: Analysis and Design', Academic Press, New York, 1986
  4. J. Doyle, K. Glover, P. Khargonekar and B. Francis, 'State Space Solutions to the Standard H$_{2}$ and H$_{\infty}$ Control Problems', IEEE Trans. on Automatic Control, Vol. AC-34, No. 8, pp. 831-847, 1989
  5. A. Nemirovskii and P. Gahinet, 'The Projective Method for Solving Linear Matrix Inequalities', Proceedings of American Control Conference, pp. 840-844, Baltimore, Maryland, June, 1944
  6. C. Scherer, P. Gahinet and M. Chilali, 'Multiobjective Output Feedback Control via LMI Optimization', IEEE Trans. on Automatic Control, Vol. AC-42, No. 7, pp. 896-911, 1997
  7. P. Gahinet, 'Explicit Controller Formulas for LMI Based H$_{\infty}$ Synthesis', Automatic, Vol. 32, pp. 1007-1014, 1996 https://doi.org/10.1016/0005-1098(96)00033-7
  8. E. Feron, P. Apkarian and P. Gahinet, 'Analysis and Synthesis of Robust Control Systems via Parameter Dependent Lyapunov Functions', IEEE Trans. on Automatic Control, Vol. AC-41, No. 7, pp. 1041-1046, 1996
  9. P. Apkarian, P. Gahinet and G. Becker, 'Self-Scheduled H$_{\infty}$ Control of Linear Parameter Varying Systems', Proceedings of American Control Conference, pp. 856-860, Baltimore, June, 1994
  10. G. Becker, 'Additional Results on Parameter Dependent Controllers for LPV Systems', Proceedings of 1996 IFAC 13th Triennial world Congress, pp. 351-356, San Francisco, 1996
  11. K. Tanaka, T. Ikeda and H. Wang, 'Robust Stabilization of a Class of Uncertain Nonlinear Systems via Fuzzy Control: Quadratic Stability, H$_{\infty}$ Control Theory, and Linear Matrix Inequalities', IEEE Trans. on Fuzzy System, Vol. 4, No. 1, pp. 1-13, Feb. 1996 https://doi.org/10.1109/91.481840
  12. B. Chen, C. Tseng and H. Uang, 'Mixed H$_{2}$/H$_{\infty}$ Fuzzy Control Design for Nonlinear Systems: An LMI Approach', IEEE Trans. on Fuzzy Systems, Vol. 8, No. 3, pp. 249-265, June 2000 https://doi.org/10.1109/91.855915
  13. S. Nguang and P. Shi, 'H$_{\infty}$ Fuzzy Control Design for Nonlinear Systems: An LMI Approach', IEEE Trans. on Fuzzy Systems, Vol. 11, No. 3, pp. 331-340, June 2003 https://doi.org/10.1109/TFUZZ.2003.812691
  14. A. Megretski and A. Rantzer, 'system analysis via integral quadratic constraints,' IEEE Trans. Automatic Control, vol. 42, No. 6, pp. 819-830, Jun. 1997 https://doi.org/10.1109/9.587335
  15. W. Assawinchaichote and S. K. Nguang, 'Fuzzy Observer Based Controller Design for Singularly Perturbed Nonlinear Systems: An LMI Approach', Proceedings of the 41th IEEE Conference on Decision and Control, pp. 2165-2170, La Vegas, Nevada, December 2002
  16. W. Assawinchaichote and S. K. Nguang, 'H$_{\infty}$ Fuzzy Control Design for Nonlinear Singularly Perturbed Systems with Pole Placement Constraints: An LMI Approach', IEEE Trans. on Systems, Man and Cybernetics-Part B: Cybernetics, pp. 1-10, 2004