초록
웹상에서 이용할 수 있는 방대한 문서의 집합인 WWW은 사용자를 위한 다양한 정보의 보고이다. 그러나 불필요한 정보의 필터링이나 사용자가 필요한 정보를 검색하는데 많은 시간이 소요되어 효율적인 의사결정을 하는데 어려움이 있다. 본 논문에서는 의사결정에 관한 요소를 계층화 구조로 나타내는 AHP나 Fuzzy AHP방법들을 데이터의 관점에서 대안, 평가기준, 주관적 속성가중치, 개념과 객체 사이에 퍼지 관계를 기반으로 웹 자원을 효과적으로 관리하고 의사결정을 할 수 있는 EFAM(Extended Fuzzy AHP Method) 모델을 제안하였다. 제안한 EFAM 모델은 웹상의 효율적인 문서검색과 특정 영역의 문제를 의사결정하기 위하여 영역의 코퍼스로부터 추출된 개념들이 가지는 의미론적 내용에 감성 기준을 고려함으로써 효율적으로 문서를 추출할 수 있어서 명확한 의사결정을 할 수가 있음을 실험을 통하여 확인한다.
WWW which is an applicable massive set of document on the Web is a thesaurus of various information for users. However, Search engines spend a lot of time to retrieve necessary information and to filter out unnecessary information for user. In this paper, we propose the EFAM(the Extended Fuzzy AHP Method) model to manage the Web resource efficiently, and to make a decision in the problem of specific domain definitely. The EFAM model is concerned with the emotion analysis based on the domain corpus information, and it composed with systematic common concept grids by the knowledge of multiple experts. Therefore, The proposed the EFAM model can extract the documents by considering on the emotion criteria in the semantic context that is extracted concept from the corpus of specific domain and confirms that our model provides more efficient decision-making through an experiment than the conventional methods such as AHP and Fuzzy AHP which describe as a hierarchical structure elements about decision-making based on the alternatives, evaluation criteria, subjective attribute weight and fuzzy relation between concept and object.