DOI QR코드

DOI QR Code

이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition

  • 사공명 (한국철도기술연구원 철도구조연구실) ;
  • 유재호 (한양대학교/한국철도기술연구원) ;
  • 박두희 (한양대학교 건설공학과) ;
  • 이준석 (한국철도기술연구원 철도구조연구실)
  • 투고 : 2009.02.03
  • 심사 : 2009.10.09
  • 발행 : 2009.10.31

초록

지하에 공동을 건설하는 터널 공사의 경우 초기 응력의 집중 및 발파와 같은 시공단계에서의 과도한 에너지의 적용으로 인하여 주변 암반에 손상을 발생시킨다. 이러한 손상의 발생은 터널에 작용하는 하중 및 터널 주변 암반의 흐름조건에 상당한 영향을 끼친다. 이러한 이유로 터널 주변에 발생하는 손상구간에 대하여 다양한 연구가 수행되었다. 본 연구에서는 유사암석으로 제작된 공동이 존재하는 절리모델의 이축압축실험을 통하여 공동주변의 손상발생을 연구하였다. 절리면은 수평면과 $30^{\circ}$, $45^{\circ}$, $60^{\circ}$의 조건으로 형성되었으며, 초조강시멘트 재료를 이용하여 유사절리모델을 제작하였다. 이축압축 실험결과 공동주변에서는 절리면에 수직한 방향으로 인장균열의 발생이 관측되었으며, 균열의 진행으로 인하여 암반블록이 형성되었으며, 진행하는 인장균열이 다른 절리면에 도달하여 암반블록이 완전히 형성된 경우 탈락하는 과정을 보였다. 이러한 인장균열의 진전은 절리면의 각도에 따라 상이한데 절리면의 각도가 클수록 안정적이며 진행성의 균열 진전 양상이 관측되었다. 이러한 인장균열의 발달은 절리면으로 구성된 암편을 보로 가정 할 경우 공동의 곡률로 인한 기하학적 형상의 불규칙성으로 인하여 모멘트가 작용하는 것으로 판단된다. 이상의 실험결과를 입자요소해석 방법을 기반으로 하는 PFC 2D를 이용하여 모사하였다. 해석결과 실험에서 관측한 바와 같이 절리면 각도가 작을수록 손상대의 폭은 넓어지며 인장균열의 진행에 의한 암반블록의 형성이 관측되었다. 또한 상호작용이 발생하는 균열을 조사한 결과 수치해석에서도 절리면의 각도가 작은 조건에서 진행성의 파괴가 나타났다.

Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

키워드

참고문헌

  1. 배성호, 전석원, 박의섭 (2005), "축소 모형시험과 개별요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구", 터널과 지하공간, 제15권, 제4호, pp.250-263
  2. 사공명 (2003), "일축압축상태의 석고 실험체에서 발생하는 날개크랙과 이차크랙에 대한 미시적 관측", 한국지반공학회 논문집, 제19권, 제2호, pp.171-178
  3. 사공명, 김세철, 이준석, 박두희 (2008), "이축압축 조건에서의 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발", 한국터널공학회 논문집, 제10권, 제3호, pp.303-312
  4. 천대성, 박찬, 박철환, 전석원 (2007), "취성파괴수준과 파괴개시 시점에 관한 진삼축 모형실험연구", 터널과 지하공간, 제17권, 제2호, pp.128-138
  5. Barquins, M., and Petit. J.-P. (1992), "Kinetic instabilities during the propagation of a branch crack: effects of loading conditions and internal pressure", Journal of Structural Geology, Vol.14(8/9), pp.893-903 https://doi.org/10.1016/0191-8141(92)90021-N
  6. Belytschko, T., Plesha, M., and Dowding, C. H. (1984), "A computer method for the stability analysis of caverns in jointed rock", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.8, pp.473-492 https://doi.org/10.1002/nag.1610080506
  7. Cai, M., and Kaiser, P. K. (2005), "Assessment of excavation damaged zone using a micromechanics model", Tunnelling and Underground Space Technology, Vol.20, pp.301-310 https://doi.org/10.1016/j.tust.2004.12.002
  8. Cai, M., Kaiser, P. K., Morioka, H., Minami, M., Maejima, T., Tasaka, Y., and Kurose, H. (2007), "FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations", International Journal of Rock Mechanics and Mining Sciences, Vol.44, pp.550-564 https://doi.org/10.1016/j.ijrmms.2006.09.013
  9. Ewy, R. T., and Cook, N. G. W. (1990a), "Deformation and fracture around cylindrical openings in rock–I. Observations and analysis of deformations", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.27, No.5, pp.387-407 https://doi.org/10.1016/0148-9062(90)92713-O
  10. Ewy, R. T., and Cook, N. G. W. (1990b), "Deformation and fracture around cylindrical openings in rock–II. Initiation, growth and interaction of fractures", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.27, No.5, pp.409-427 https://doi.org/10.1016/0148-9062(90)92714-P
  11. Fakjimi, A., Carvalho, F., Ishida, T., and Labuz, J. F. (2002), "Simulation of failure around a circular opening in rock", International Journal of Rock Mechanics and Mining Sciences, Vol.39, pp.507-515 https://doi.org/10.1016/S1365-1609(02)00041-2
  12. Goodman, R. E., Taylor, R. L., and Brekke, T. L. (1968), "A model for the mechanics of jointed rock", Journal of Soil Mechanics and Foundations Division ASCE, Vol.94, pp.637-659
  13. Haimson, B. C., and Song, I. (1993), "Laboratory study of borehole breakouts in Cordova Cream: a case of shear failure mechanism", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.30, No.7, pp.1047-1056 https://doi.org/10.1016/0148-9062(93)90070-T
  14. Itasca Consulting Group (2004), PFC2D (particle flow code in 2 dimension user’s guide, Minneapolis, Minnesota, Itasca Consulting Group, Inc
  15. Jiang, Y., Li, B., and Yamashita, Y. (2009), "Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method", International Journal of Rock Mechanics and Mining Sciences, Vol.46, pp.97-106 https://doi.org/10.1016/j.ijrmms.2008.05.004
  16. Lee, J. S., Bang, C. S., Mok, Y. J., and Joh, S. H. (2000), "Numerical and experimental analysis of penetration grouting in jointed rock masses", International Journal of Rock Mechanics and Mining Sciences, Vol.34, pp.1027-1037 https://doi.org/10.1016/S1365-1609(00)00040-X
  17. Lee, M. and Haimson, B. (1993), "Laboratory study of borehole breakouts in Lac du Bonnet Granite: a case of extensile failure mechanism", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.30, No.7, pp.1039-1045 https://doi.org/10.1016/0148-9062(93)90069-P
  18. Maghous, S., Bernaud, D., Freard, J. and Garnier, D. (2008), "Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis", International Journal of Rock Mechanics and Mining Sciences, Vol.45, pp.1273-1286 https://doi.org/10.1016/j.ijrmms.2008.01.008
  19. Martin, C. D., Read, R. S., and Martino, J. B. (1997), "Observations of brittle failure around a circular test tunnel', International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.7, pp.1065-1073 https://doi.org/10.1016/S1365-1609(97)90200-8
  20. Martino, J. B., and Chandler, N. A. (2004), "Excavation-induced damage studies at the Underground Research Laboratory", International Journal of Rock Mechanics and Mining Sciences, Vol.41, pp.1413-1426 https://doi.org/10.1016/j.ijrmms.2004.09.010
  21. Meglis, I. L., Chow, T. M., and Young, R. P. (1995), "Progressive microcrack development in tests on Lac du Bonnet granite-I. acoustic emission source location and velocity measurements", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.32, No.8, pp.741-750 https://doi.org/10.1016/0148-9062(95)00014-8
  22. Meglis I. L., Martin C. D., and Young, R. P. (2005), "Assessing in situ microcrack damage using ultrasonic velocity tomography", Internation al Journal of Rock Mechanics and Mining Sciences, Vol.42, pp.25-34 https://doi.org/10.1016/j.ijrmms.2004.06.002
  23. Potyondy, D. O., and Cundall, P. A.(2004), "A bonded-particle model for rock", International Journal of Rock Mechanics and Mining Sciences, Vol.41, pp.1329-1364 https://doi.org/10.1016/j.ijrmms.2004.09.011
  24. Pusch, R., and Stanfors, R. (1992), "The zone of disturbance around blasted tunnels at depth', International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.30, No.7, pp.1047-1056 https://doi.org/10.1016/0148-9062(92)92629-Q
  25. Senseny, P. E. and Pucik, T. A. (1999), "Development and validation of computer models for structures in jointed rock", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.23, pp.751-778 https://doi.org/10.1002/(SICI)1096-9853(199907)23:8<751::AID-NAG4>3.0.CO;2-1
  26. Shen, B., and Barton, N. (1997), "The disturbed zone around tunnels in jointed rock masses", International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.1, pp.117-125 https://doi.org/10.1016/S1365-1609(97)80037-8
  27. Souley, M., Homand, F., Pepa, S., and Hoxha, D. (2001), "Damageinduced permeability changes in granite: a case example at the URL in Canada", International Journal of Rock Mechanics and Mining Sciences, Vol.38, pp.297-310 https://doi.org/10.1016/S1365-1609(01)00002-8
  28. Tsang, C-F., Bernier, F., and Davies, C. (2005), "Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal", International Journal of Rock Mechanics and Mining Sciences, Vol.42, pp.109-125 https://doi.org/10.1016/j.ijrmms.2004.08.003
  29. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", International Journal of Rock Mechanics and Mining Sciences, Vol.44, pp.871-889 https://doi.org/10.1016/j.ijrmms.2007.01.004