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Abstract
Oh (2009) has proposed a likelihood ratio test for comparing two agreements for dependent observations

based on the concept of marginal homogeneity and marginal stochastic ordering. In this paper we consider the
comparison of more than two agreement measures. Simple ordering and simple tree ordering among agreement
measures are investigated. Some test procedures, including likelihood ratio test, are discussed.
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1. Introduction

Suppose more than two groups of raters classify a sample of subjects using the same ordered categor-
ical scale and we want to compare these agreements. If there are only two observers in each group we
may compute kappa statistics for each group and compare them. Fleiss and Cohen (1973) studied the
measuring agreement for ordinal categorical data using so-called weighted kappa defined as

κw =

∑∑
wi jπi j −∑∑

wi jπi+π+ j

1 −∑∑
wi jπi+π+ j

, (1.1)

where the weights are chosen to be wi j = 1 − (i − j)2/(I − 1)2 and i, j = 1, 2, . . . , I.
However, these kappas are apparently not independent and hence no usual k-sample inference

tools can be directly applied. McKenzie et al. (1996) studied the comparison of two kappa statistics
obtained from each of two dependent 2 by 2 tables. Donner et al. (2000) studied the test for the
equality of two dependent kappa statistics. The two observers in each of the two groups use a binary
scale to rate the subjects. This research, however, can be applied only when a binary scale is used for
rating subjects.

Recently Oh (2008, 2009) has proposed test procedures including likelihood ratio test based on
the marginal association for the two-sample case. In this paper we are going to extend Oh (2009)’s
result to the case of multi-sample. This extension seems to be quite straightforward but need some
intensive computational works as well as some statistical issues arising in order restricted statistical
inference.
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2. Comparison of g Independent Agreements

Oh (2009) has proposed an alternative way of comparing agreements which does not require the
assumption of equal marginal probabilities. In this section we assume that there are only two rates
in each group and hence we can form a square contingency table. In a square contingency table
which displays the joint rating of two observers, the diagonal cells are the most strongly agreed and
the lower left and upper right cells are the least strongly agreed. The closer to the diagonal, the
stronger the agreement. Based on this concept we define agreement ordering as follows. Let πi j

and π′i j be cell probabilities of two square contingency tables with the same dimension. Then we
say that the contingency table corresponding to π′ has stronger agreement than the contingency table
corresponding to π if

k∑

i=1

π′ii ≥
k∑

i=1

πii,

k∑

i=1

π′ii +
∑̀

r=1


k−r∑

i=1

(π′i,i+r + π′i+r,i)

 ≥
k∑

i=1

πii +
∑̀

r=1


k−r∑

i=1

(πi,i+r + πi+r,i)

 (2.1)

for ` = 1, . . . , k − 1. We denote this π � π′ .
Since this agreement ordering (2.1) is closely related to a stochastic ordering the statistical in-

ference concerning agreement ordering follows that of stochastic ordering between two multinomial
parameters. See Robertson and Wright (1981) and Oh (2009).

Now consider g square contingency tables labeled π1,π2, . . . ,πg and impose a partial order in-
duced by (2.1) among g tables. First we consider simple ordering. Suppose

π1 � π2 � · · · � πg.

Then this is going to be a problem of g stochastically ordered distributions. There are vast literature
concerning these problems. Dardanoni and Forcina (1998), Feng and Wang (2007), El Barmi and
Johnson (2006), El Barmi and Mukerjee (2005), Wang (1996) are among others.

Next we consider simple tree ordering. For example we may consider the following restriction on
tables. [

π1,π2, . . . ,πk−1
] � πg or

[
π1,π2, . . . ,πg−1

] � πg.

To our best knowledge, no statistical inference procedures concerning this problem has been studied.
We leave it as a future study.

3. Comparison of g Dependent Agreements

Suppose g groups of observers classify a sample of subjects using the same ordered categorical scale
and that we are interested in comparing g agreements. If there are only two observers in each groups,
then we may compute g kappas and compare these these g measurements. However, these measure-
ments are apparently not independent and hence no usual g-sample inference tool nor the test pro-
cedure proposed in Section 2 can be directly applied. Donner et al. (2000), McKenzie et al. (1996)
studied the comparison of two dependent (correlated) kappas. However, the categorical scales used in
their studies were restricted to binary. Now we are going to consider this problem of arbitrary scales.

Let Xi = (X1i,X2i, . . . ,Xgi) be the score vector of ith subject given by the raters, where X`i =

(X`1i, X`2i, . . . , X`k`i), j = 1, 2, . . . , k`, ` = 1, 2, . . . , g and X` ji be the score of ith subject given by the
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jth rater in `th group of raters. Consider g positive valued functions D1,D2, . . . ,Dg such that

(1) D` : Rk` → R+, for ` = 1, 2, . . . , g,
(2) D`(x) = D`(xγ) for any permutation xγ of x,
(3) D`((a, a, . . . , a)) = 0 for all a > 0,
(4) D`(·) is convex function over Rk` ,

(5)
{
yi ∈ R+ : yi = D1(X1i)

}
=

{
yi ∈ R+ : yi = D2(X2i)

}
= · · · = {

yi ∈ R+ : yi = Dg(Xgi)
}
.

Note that D` can be served as a measure of dispersion. For details, see Gilula and Haberman (1995).
Then we can use this function as a measure of agreement of raters within subject. It is said to be more
agreed for the smaller value of D`. For example, D` can be chosen to be

D`(X`i) = max
j=1,...,k`

{X` ji} − min
j=1,...,k`

{X` ji}.

Now suppose, for all t > 0,

#
{
i : D`1 (X`1i) ≤ t, i = 1, . . . , n

}
n

≥ #
{
i : D`2 (X`2i) ≤ t, i = 1, . . . , n

}
n

.

This means that the proportion of more agreed subjects for `th
1 observer group is always greater than

`th
2 observer group. As we have seen in Oh (2009), this is clearly related to stochastic ordering.

Assume that the set of possible values of D`’s be {s1, . . . , sk}. Let

pi1i2...ig =
#
{
i : D`(X`i) = si` , ` = 1, . . . , g, i = 1, . . . , n

}
n

,

for i` ∈ {1, . . . , k} where ` = 1, 2 . . . , g. Also let p̂i1i2...ig be the observation of pi1i2...ig and ni1i2...ig =

np̂i1i2...ig . Note that pi1i2...ig form a g-dimensional square contingency table. Define marginal probability
p(`) = (p(`)

1 , p(`)
2 , . . . , p(`)

k ) as follows;

p(`)
j =

∑
i`= j

ih=1,...,k if h,`

pi1i2...ig , j = 1, 2, . . . , k, ` = 1, 2, . . . , g.

Consider the hypothesis

H0 : p(1) = p(2) = · · · = p(g), (3.1)

where

p(i) = p( j) if and only if p(i)
h = p( j)

h , for h = 1, . . . , k.

This is so-called marginal homogeneity of g-dimensional square contingency table.
Next we consider the restricted alternative hypotheses. Let I = {1, 2, . . . , g} be an index set and

� be a partial order on I. Here we consider an alternative hypothesis related to this partial ordering.
Suppose i � j implies p(i) ≤S p( j), where

p(i) ≤S p( j) if and only if
h∑

`=1

p(i)
`
≤

h∑

`=1

p( j)
`
, for h = 1, . . . , k. (3.2)
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If (3.2) holds for each pair (i, j) such that i � j, i, j ∈ I then we say that p(`)’s is isotonic with respect
to � on I.

Now we consider the following alternative hypotheses

Ha : p(`)’s is isotonic with respect to � on I.

There are many types of partial ordering we may interested in. Simple ordering and simple tree
ordering are, however, two most widely used partial orderings. In this paper we consider these two
partial ordering only since these are the indicative of all other orderings. First we consider simple
ordering.

3.1. Simple order

Consider the following hypothesis.

Ha1 : p(1) ≤S p(2) ≤S · · · ≤S p(g). (3.3)

This is a simple ordering or an increasing order.
Let C = {ci j}k2×k, i = 1, . . . , k2, j = 1, . . . , k, where

ci j = I{k×( j−1)+1,...,k× j}(i) − I{mod(i−1,k)+1}( j),

where IA(·) is an indicator function, and mod(i, k) is residue when i is divided by k. Let p =

({pi1i2...ig , i1, i2 . . . ig = 1, 2, . . . , k})′. Let

A = [A1, . . . , Ag−1],

where
Ai = 1 ⊗ · · · ⊗ 1︸      ︷︷      ︸

i−1

⊗C ⊗ 1 ⊗ · · · ⊗ 1︸      ︷︷      ︸
g−i−1

,

and 1k×1 = (1, 1, . . . , 1)′ and
⊗

is kronecker’s product.
Then restrictions (3.1) and (3.3) are re-expressed by

A′p = 0, and (3.4)
A′p ≤ 0, (3.5)

respectively, where the equality and inequality between vectors are componentwise. Let

B = Ig−1 ⊗ B

where B = {bi j}k×(k−1), i = 1, . . . , k, j = 1, . . . , k − 1 with bi j = 1 if i ≤ j, = 0, otherwise, and Ig−1 is
identity matrix with dimension g − 1. To eliminate redundancy in (3.4) and (3.5), we multiply by B
and have

B′A′p = 0, and (3.6)
B′A′p ≤ 0. (3.7)
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3.2. Simple tree order

Consider the following hypothesis.

Ha2 : p(`) ≤S p(g), for ` = 1, . . . , g − 1. (3.8)

This is a simple tree ordering. Define k × k matrices Ci’s such that

(C′1,C
′
i . . . ,C

′
k)′ = C,

where C in defined in simple ordering case. Let

A = [A1, . . . , Ag−1],

where

Ai = 1 ⊗ · · · ⊗ 1︸      ︷︷      ︸
i−1

⊗



1 ⊗ · · · ⊗ 1 ⊗ C1
1 ⊗ · · · ⊗ 1 ⊗ C2

...
1 ⊗ · · · ⊗ 1 ⊗ Ck



and the number of vectors 1’s involved in the Kronecker product inside the bracket is g − i − 1. We
note that the matrix A and that in simple ordering case are not the same. Then restrictions (3.8) is
re-expressed by

A′p ≤ 0

and by eliminating redundancy we have

B′A′p ≤ 0.

Finally, we state here an unrestricted alternative hypothesis which is

Ha0 : p(i) , p( j), for at least one pair of (i, j) such i , j. (3.9)

Then (3.9) is re-expressed by A′p , 0, and by eliminating redundancy we have B′A′p , 0. However
we are not going to consider the test against this alternative hypothesis.

4. Test Statistic and It’s Distribution

Now we are going to compute the likelihood ratio test statistic. Derivation of test statistics rely heavily
on Fenchel duality and Khun-Tucker condition. Details of derivation is omitted here but interested
reader may refer Jordan (1999) for g = 2 case. The extension to the case of g > 2 is straightforward.

Suppose p̂i1i2...ig > 0 for all i` = 1, 2, . . . , k and ` = 1, . . . , g. Let W−1
kg×kg = diag{1/ p̂i1i2...ig } − p̂p̂′.

Then the likelihood ratio test rejects the null for the large value of T ,

T = −2 ln


supp∈H0

∏
i`=1,...,k,`=1,...,g p

ni1 i2 ...ig

i1i2...ig

supp∈Ha

∏
i`=1,...,k,`=1,...,g p

ni1 i2 ...ig

i1i2...ig



= n min
α≤0

{[(
B′A′W−1AB

)−1
B′A′p̂ − α

]′ (
B′A′W−1AB

) [(
B′A′W−1AB

)−1
B′A′p̂ − α

]}
, (4.1)
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where α′ = (α1, . . . , α(g−1)(k−1)). We note that T can be obtained via quadratic programming. There is
substantial literature concerning quadratic programming, for example, Sposito (1975).

To find a critical value for the test, we need to know the asymptotic null distribution of test statistic
T . For g = 2, El Barmi and Dykstra (1995) and Jordan (1999) showed that the asymptotic null
distribution of T is a chi-bar-square distribution. Unfortunately, for g > 2, we are unable to derive the
exact distribution at this moment. But we are sure that this distribution is going to be a chi-bar-square
distribution. That is, for t > 0,

lim
n→∞

P(T ≥ t) =

(g−1)(k−1)∑

`=0

w(`, p;C)P
(
χ2

(g−1)(k−1)−` ≥ t
)

≤ 1
2

{
P

(
χ2

(g−1)(k−1) ≥ t
)

+ P
(
χ2

(g−1)(k−1)−1 ≥ t
)}
, (4.2)

where w(`,p;C) is a level probability and C is a convex cone of dimension (g−1)(k−1). See Robertson
et al. (1988) for definition and computation of level probability. Specifically, we were unable to find
exact expression of these level probabilities w(`, p;C). On the other hand, we may use (4.2) to find a
critical value for somewhat conservative test. Note that (4.2) is so-called least favorable distribution.

Feng and Wang (2007) studied likelihood ratio test against simple stochastic ordering among
several multinomial distribution. They gave the asymptotic null distribution of test statistic which is a
chi-bar-square distribution. We may use this result to find a critical value, but for the large value of g
and k the values of level probabilities are intractable. Wang (1996) suggested bootstrapping method.
For the small values of g and k we may consider permutation tests.

References

Dardanoni, V. and Forcina, A. (1998). A unified approach to likelihood inference on stochastic order-
ings in a nonparametric context, Journal of the American Statistical Association, 93, 1112–1123.

Donner, A., Shoukri, M., Klar, N. and Bartfay, E. (2000). Testing the equality of two dependent kappa
statistics, Statistics in Medicine, 19, 373–387.

El Barmi, H. and Dykstra, R. (1995). Testing for and against a set of linear inequality constraints in a
multinomial setting, The Canadian journal of Statistics, 23, 131–143.

El Barmi, H. and Johnson, M. (2006). A unified approach to testing for and against a set of linear
inequality constraints in the product multinomial setting, Journal of Multivariate Analysis, 97,
1894–1912.

El Barmi, H. and Mukerjee, H. (2005). Inferences under a stochastic ordering constraint: The K-
sample case, Journal of the American Statistical Association, 100, 252–261.

Feng, Y. and Wang, J. (2007). Likelihood ratio test against simple stochastic ordering among several
multinomial populations, Journal of Statistical Planning and Inference, 137, 1362–1374.

Fleiss, J. L. and Cohen, J (1973). The equivalence of weighted kappa and the intraclass correlation
coefficient as measures of reliability, Educational and Psychological Measurement, 33, 613–619.

Gilula, Z. and Haberman, S. J. (1995). Dispersion of categorical variables and penalty functions;
derivation, estimation and comparability, Journal of the American Statistical Association, 90,
1447–1452.

Jordan, J. L. (1999). A test of marginal homogeneity versus stochastic ordering in contingency tables,
Ph. D. Thesis, The University of Iowa.



Comparing More than Two Agreement Measures 1029

McKenzie, D. P., MacKinnon, A. J., Péladeau, N., Onghena, P., Bruce, P. C., Clarke, D. M., Harrigan,
S. and McGorry, P. D. (1996). Comparing correlated kappas by resampling: Is one level of
agreement significantly different from another?, Journal of Psychiatric Research, 30, 483–492.

Oh, M. (2008). Comparison of two dependent agreements using test of marginal homogeneity, Com-
munications of the Korean Statistical Society, 15, 605–614.

Oh, M. (2009). Inference on measurements of agreement using marginal association, Journal of the
Korean Statistical Society, 38, 41–46.

Robertson, T. and Wright, F. T. (1981). Likelihood ratio tests for and against a stochastic ordering
between multinomial populations, The Annals of Statistics, 9, 1248–1257.

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference, Wiley,
Chichester.

Sposito, V. A. (1975). Linear and Nonlinear Programming, Iowa State University Press, Ames.
Wang, Y. (1996). A likelihood ratio test against stochastic ordering in several populations, Journal of

the American Statistical Association, 91, 1676–1683.

Received October 2009; Accepted November 2009




