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Abstract
A standard approach is to classify all of future observations. In some cases, however, it would be desirable

to defer a decision in particular for observations which are hard to classify. That is, it would be better to take
more advanced tests rather than to make a decision right away. This motivates a classifier with a reject option
that reports a warning for those observations that are hard to classify. In this paper, we present the method which
gives efficient computation with a reject option. Some numerical results show strong potential of the proposed
method.
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1. Introduction

A standard approach for classifying one group from the other group is to classify all of future observa-
tions. In some cases, however, it would be desirable to defer a decision in particular for observations
which are hard to classify. For example, an observation whose conditional probability of being cancer
is around 1/2, it would be better to take more advanced tests rather than to make a decision right away.
This motivates a classifier with a reject option that reports a warning for those observations that are
hard to classify. Many empirical studies in the engineering community support that a reject option
effectively reduces misclassification error rates. See, for example, Lendgrebe et al. (2006). Recently,
Bartlett and Wegkamp (2008) proposed a learning algorithm with a reject option based on the support
vector machines(SVM, Cortes and Vapnik, 1995) called the SVM with a reject option and studied its
theoretical properties.

Let (x1, y1), . . . , (xn, yn) be input-output pairs of given data where xi ∈ Rp is an input random
vector and yi ∈ {−1, 1} denotes a class label. We assume that the data are n independent copies
of a random vector (X,Y). Traditional learning algorithms try to find the optimal hyperplane which
minimizes the misclassification error rate E (I(Y f (X) < 0)) among all linear hyperplanes f (x) = β0 +

xTβ, β0 ∈ R, β ∈ Rp (we use β = (β0, β
T )T ). A method of estimating the optimal hyperplane

is to minimize a regularized empirical risk given as
∑n

i=1 φ
( − yi

(
β0 + xT

i β
))

+ Pλ(β), where φ(z) is
a convex surrogate loss function of the 0–1 loss I(z < 0) and Pλ is a penalty function controlling
misclassification error and classifier’s complexity. Various surrogate loss functions φ(z) correspond to
various learning algorithms including logistic regression, boosting and SVM (Hastie et al., 2001).

A learning algorithm with a reject option is to construct a classifier t : Rp → {−1, 1,r}, where the
interpretation of the output r is of being in doubt and making no decision. Chow (1970) introduced
a misclassification error rate of a classifier with a reject option as Ld(t) = d · Pr(t(X) = r) + Pr(t(X) ,
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Table 1: The misclassification’s cost matrix with a reject option
ŷ

y +1 r −1
+1 0 d 1
−1 1 d 0

Y, t(X) , r) where d ∈ [0, 1/2) is a cost of a reject option. Table 1 shows that the misclassification’s
cost matrix for classification problem with a reject option.

Proposition 1. (Chow’ rule; Chow, 1970) For 0–1 loss function with a reject option Ld(t) and a
given classifier t, let t∗ be the Bayes classifier with respect to Ld(t). Then the classifier t∗ with a reject
option is given as

t∗(x) =



−1, if η(x) < d,
r, if d ≤ η(x) ≤ 1 − d,

1, if η(x) > 1 − d,

where η(x) = Pr(Y = 1|X = x) and 0 ≤ d < 1/2.

For given real valued function f (x) and δ > 0, Bartlett and Wegkamp (2008) considered a method
constructing a classifier with a reject option tδf (x) by

tδf (x) = sign f (x)I(| f (x)| > δ) + rI(| f (x)| ≤ δ).

Then, the misclassification error rate of tδf becomes E(ld,δ(Y f (X))) where

ld,δ(z) =



1, if z < −δ,
d, if |z| ≤ δ,
0, otherwise.

They proposed the SVM with a reject option by replacing ld,δ with a convex surrogate loss and ap-
plying the l2 norm of the coefficients as a penalty function. That is, the SVM with a reject option
estimates a classifier by minimizing the following regularized empirical risk

n∑

i=1

φd

(
−yi

(
β0 + xT

i β
))

+
λ

2
‖β‖22, (1.1)

where ‖β‖22 =
∑p

j=1 β
2
j and the surrogated loss function φd, the hinge loss with a reject option, is given

as

φd(z) =



1 − 1 − d
d

z, if z < 0,

1 − z, if 0 ≤ z < 1,
0, otherwise.

(1.2)

Bartlett and Wegkamp (2008) showed that φd is a reasonable surrogate loss for ld,δ by proving
the Fisher consistency. See Figure 1 for comparison of the ld,δ and φd as well as the hinge loss
φH(z) = (1−z)+ that is a surrogate loss for the SVM, where (z)+ = max{z, 0}. Note that φd is piecewise
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Figure 1: The hinge loss φd with a reject option when d = 0.2 and other loss functions

linear as the hinge loss. However, there are two nondifferentiable points - one at z = 1 and the other
at z = 0 in φd while there is only one nondifferentiable point at z = 1 in the hinge loss.

In this paper, we consider a machine learning approach for variable selection with a reject option.
For this purpose, the l1 penalty is applied to the SVM with a reject option. The l1 penalty is widely
used for variable selection in many contexts including Tibshirani (1996) and Zhu et al. (2004) since
it gives a sparse solution (i.e. some estimated coefficients are exactly zero). We call the proposed
method the l1 SVM with a reject option (L1SVM-R). For the purpose of comparison, we denote the
standard l1 SVM (Zhu et al., 2004) as L1SVM.

The paper is organized as follows. In Section 2, we review the bundle method for minimizing
non-smooth objective function and apply this to the l1 SVM with a reject option. Numerical results
on simulated data as well as publicly available gene expression data set are presented in Section 3.
Concluding remarks follow in Section 4.

2. Methodology

In this section, we present an efficient algorithm to solve

min
β0,β

n∑

i=1

φd (yi f (xi)) + λ‖β‖1, (2.1)

where ‖β‖1 =
∑p

j=1 |β j|. The Equation (2.1) is convex and continuous function but not differentiable.
That is, a main difficulty is oriented from non-smooth surrogate function. Recently, the bundle method
is developed where it efficiently treats a minimization problem with non-smooth convex objective.

2.1. Bundle method

Conceptually, bundle method can be characterized as cutting plane method. Here, cutting plane is a
lower bound of convex objective function. See Figure 2. Figure 2(a) depicts that a convex objective
function (not necessary smooth) and its Taylor approximations of first order and the shaded area of
Figure 2(b) describes the maximum of Taylor approximations of first order. This maximum function is
the lower bound of the objective function. Thus, the bundle method or cutting plane method minimizes
the lower bound instead of the objective function. Since the lower bound is linear function, it can be
implemented easily with a non-smooth function.



1000 Hosik Choi, Yongdai Kim, Sang-Tae Han, Hyuncheol Kang

0 2 4 6 8

0

5

10

15

20

25

30

β

R(β
)

(a)

0 2 4 6 8

0

5

10

15

20

25

30

β

R(β
)

(b)

Figure 2: A convex function R(β) is bounded below by Taylor approximation of first order

Definition 1. For a convex function F, µ is called a subgradient of F at w if and only if

F(w̃) ≥ F(w)+ < w̃ − w, µ > for all w̃.

The set of subgradients at a point is called the subdifferential, and is denoted by ∂wF(w).

The problem of the regularized empirical is minβ J(β) , R(β) + Pλ(β). Then, Taylor first order
approximation for R(β) at a given solution β(t) is

R(β) ≥ R
(
β(t)

)
+ ∂βR

(
β(t)

)T (
β − β(t)

)
, for all β.

And hence, the lower bound RCP
t (β) of the objective given previous set of solutions β(l−1), l < t, is less

than R(β). That is,

R(β) ≥ RCP
t (β) , max

l<t

[
R

(
β(l−1)

)
+ ∂βR

(
β(l−1)

)T (
β − β(l−1)

)]
(2.2)

holds.
Note that RCP

t (β) is a piecewise linear lower bound of the R and also, this is the tightest among
lower bounds in the sense of first order approximation.

Let Jt(β) = RCP
t (β) + Pλ(β) be the regularized objective function at t-iteration step. Along with

definitions of Jt(β) and RCP
t (β), the following simple lemma holds.

Lemma 1. (Teo et al., 2007, 2009) Let β∗ be the minimizer of J(β) and let J∗ be its minimum
value J(β∗). Then, the following holds for the upper bound J+

t (β) of J∗ and the lower bound J−t (β) of
J∗:

J+
t (β) , min

l≤t
Jl+1

(
β(l)

)
≥ J∗ and J−t (β) , Jt

(
β(l)

)
≤ J∗.

The sequence J+
t is monotonically decreasing and J−t is monotonically increasing. Moreover, if we let

εt = minl≤t Jl+1(β(l)) − Jt(β(t)) then εt is monotonically decreasing and εt ≥ minl≤t Jl+1(β(l)) − J∗ ≥ 0.

Lemma 1 says that the algorithm converges to the optimum for sufficiently small εt. Figure 3
summarizes the pseudo code of the bundle method for minimizing a non-smooth objective function
for a given stopping criterion ε.
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1. Initialize t = 0, β(0) =
(
β0, β

T
)T

= 0 and calculate J0
(
β(0)

)

2. Repeat until εt ≤ ε.
(a) t ← t + 1,

(b) Compute (sub)gradient at and offset bt

where at = ∂βR
(
β(t−1)

)
, bt = R

(
β(t−1)

)
− ∂βR

(
β(t−1)

)T
β(t−1)

(c) Update model : RCP
t (β) = max1≤l≤t aT

l β
(l−1) + bl.

(d) Find minimizer β(t) = arg min Jt(β) := RCP
t (β) + λ‖β‖1.

(e) εt ← min0≤l≤t J
(
β(l)

)
− Jt

(
β(t)

)

3. Return β(t).

Figure 3: Bundle Method for minimizing a non-smooth objective function for a given stopping criterion ε

2.2. l1 SVM with a reject option using the bundle method

Let R(β) =
∑n

i=1 φd(yi f (xi)), Pλ(β) = λ
∑p

j=1 |β j| and J(β) = R(β) + λ
∑p

j=1 |β j|. Then, the problem
minβ Jt(β) of t-iteration step of the bundle method is as follows:

min
β

RCP
t (β) + λ

p∑

j=1

|β j| = min
β

max
l≤t

[
R

(
β(l−1)

)
+ ∂βR

(
β(l−1)

)T (
β − β(l−1)

)]
+ λ

p∑

j=1

|β j|
 .

This problem is equivalent to

min
ξ,β

ξ + λ

p∑

j=1

|β j|
 subject to ξ ≥ R

(
β(l−1)

)
+ ∂βR

(
β(l−1)

)T (
β − β(l−1)

)
, for all l ≤ t.

This can be solved by usual linear programming(LP). The exact form is

min
ξ, β+

0 , β
−
0 , β

+, β−
ξ + λ

p∑

j=1

(
β+

j + β−j
)
,

subject to ξ ≥ aT
l β

+ − aT
l β
− + bl, l = 1, . . . , t,

β+ =
(
β+

0 , β
+T

)T
, β− =

(
β−0 , β

−T
)T ≥ 0, β+ ∈ Rp+1

+ and β− ∈ Rp+1
+ .

Since the penalty as well as the surrogate loss are piecewise linear, we can use a LP to solve the
optimization problem of the l1 SVM with a reject option. Also, the optimization problem minβ Jt(β) of
inner loops of the bundle method can be solved using LP. However, in the former problem, the number
of constraints equals to the number of observations in the LP. Meanwhile, in the latter problem, the
number of constraints equals the number of (sub)gradients which are computed previously. Since the
number of iterations required for convergence is typically in the order 10s to 100s, the computational
cost of the resulting LP of the bundle method is not so expensive. Thus, the computational efficiency
via the standard LP becomes worse as the number of observations grows.

3. Numerical Studies

In this section, we compare l1 SVM with a reject option with the standard l1 SVM (Zhu et al., 2004)
that does not have a reject option by analyzing simulated as well as real data sets in terms of prediction
accuracy and variable selectivity.
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Table 2: Comparison of prediction accuracy of the L1SVM and L1SVM-R: average misclassification errors
(standard errors)

r Method Total MIS Accept MIS Reject MIS Reject p-value

0 L1SVM .151 (.003) .134 (.003) .505 (.017)
L1SVM-R .147 (.003) .131 (.003) .483 (.013) .048 (.007) .003

0.3 L1SVM .215 (.003) .193 (.003) .480 (.013)
L1SVM-R .211 (.003) .191 (.004) .470 (.024) .078 (.010) .002

0.6 L1SVM .258 (.004) .236 (.004) .493 (.013)
L1SVM-R .251 (.004) .230 (.004) .515 (.024) .087 (.013) .001

Table 3: Comparison of variable selectivity of the L1SVM and L1SVM-R: average numbers of selected
coefficients (standard errors)

r Method Czeros Cnzeros Count Others

0 L1SVM 90.90 (0.976) 5 (0) 20 20 20 20 20 0.863
L1SVM-R 90.35 (1.164) 5 (0) 20 20 20 20 20 0.979

0.3 L1SVM 92.45 (0.634) 4.300 (.147) 20 17 17 17 15 0.537
L1SVM-R 90.95 (0.752) 4.500 (.154) 20 18 18 17 17 0.853

0.6 L1SVM 89.15 (1.186) 3.550 (.198) 19 10 11 12 19 1.232
L1SVM-R 89.25 (1.015) 3.750 (.176) 18 14 13 12 18 1.211

3.1. Simulation

For simulation data, we generate a sample of size n as follows. Let µ+ be a p-dimensional vector
whose first q entries are D and the other p − q entries are zero and let µ− = −µ+. Then, we generate
x from Np(µ+,Σ) and assign y = 1 for the first n/2 observations and generate x from Np(µ−,Σ) and
assign y = −1 for the last n/2 observations. We let the (k, l) entry of Σ be r|k−l| for some r ∈ [0, 1).
Note that all input variables except the first q are noisy.

Table 2 compares the prediction accuracy. The training sample size is 100, the regularization
parameters (d, λ) are selected based on an independent validation sample of size 100 and the mis-
classification errors are calculated based on another independent test sample of size 2000. We repeat
the simulation 20 times and report the averages with their standard errors in the parenthesis. In the
table, “Total MIS” denotes the misclassification error rates obtained based on all observations in a
test sample, “Accept MIS” based only on accepted observations by a L1SVM-R classifier and “Reject
MIS” based on rejected observations. “Reject” is the portion of rejected observations. The p-values
are obtained by the paired t-test with 20 paired error rates of L1SVM-R and L1SVM.

Table 3 shows variable selectivities of two methods. In the table, “Czeros” and “Cnzeros” are the
average numbers of correct 0 (true is 0 and estimated as 0) and correct nonzero coefficients (true is
nonzero and estimated as nonzero) in the estimated models, “Count” represents the frequencies of the
first q coefficients being estimated as nonzero among 20 simulations and “Others” is the frequencies
of selected noisy variables. We set D = 0.5, p = 100 and q = 5. In the Table, we highlight the smallest
misclassification error rates by bold face.

The L1SVM-R always has lower misclassification errors significantly (except one case - Reject
MIS with r = 0.6) than the L1SVM, and the improvements are statistically significant in most cases.
Also, note that the misclassification error rates on rejected observations are around 0.5, which indi-
cates that the L1SVM-R successively selects observations near a decision boundary. The superior
prediction performance of the L1SVM-R is partly because using only high quality samples (samples
from far away a decision boundary) makes a corresponding classifier robust to less informative sam-
ples that usually locate near a decision boundary and hence yields a better prediction accuracy. For
variable selectivity, we can see that the L1SVM-R and L1SVM are competitive. Based on the results
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Table 4: Prediction accuracies, reject portions, p-values and mean model sizes (Vsize, |V|) with the
corresponding standard errors in the parentheses of the L1SVM and L1SVM-R on thyroid cancer data

Method Total MIS Accept MIS Reject MIS Reject p-value Vsize
L1SVM .254 (.018) .235 (.018) .512 (.071) 3.450 (.872)
L1SVM-R .235 (.009) .218 (.011) .481 (.068) .059 (.011) .097 2.850 (.386)

of the simulation, we can conclude that the L1SVM-R improves prediction accuracy significantly
without hampering variable selectivity.

3.2. Analysis of a gene expression data

In this section, we analyze gene expression data set for thyroid cancer (Yukinawa et al., 2006). Thy-
roid cancer is a relatively common cancer accounting for roughly 1% of total cancer incidence. There
are two main types of thyroid cancer, papillary carcinoma(PC) and follicular carcinoma(FC). In ad-
dition to these malignant types, a benign tumor, follicular adenoma(FA), is also prevalent. It consists
of 168 samples and 2000 genes. To calculate misclassification errors, we divide each data set into
two parts, training and test data sets, by randomly selecting 2/3 observations and 1/3 observations,
respectively. We construct a classifier on training data and select the regularization parameters (d, λ)
by minimizing the BIC-type criterion (Schwarz, 1978) calculated on the training data :

1
n

n∑

i=1

φd(yi f (xi)) +
log n
2n
|V|,

where |V| is the number of nonzero coefficients in β. Then, we measure a misclassification error on
test data. We repeat this procedure 20 times and summarize the results in Table 4.

The results also confirm superiority of the L1SVM-R over the L1SVM. That is, the L1SVM-R
performs better than the L1SVM in prediction. As shown in Table 4, the L1SVM-R performs better in
terms of Total MIS and Accept MIS than the L1SVM. Also, the L1SVM-R has lower error rates even
for rejected samples in most cases. The numbers of selected genes (Vsize in the table) are similar.

4. Conclusion

In this paper, we proposed a learning method which can simultaneously select signal variables and
produce a highly accurate predictive model by incorporating a reject option. Also, we developed
an efficient computational algorithm for minimizing non-smooth objective function without much
difficulty. Analysis of simulated and real data set suggested the strong potential of the proposed
method.

There would be various applications of the reject option. For example, we can remeasure rejected
samples. The remeasurement would improve prediction accuracy further in particular when there are
measurement errors.
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