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Abstract

Basu et al. (1998) proposed the minimum divergence estimating method which is free from using the painful
kernel density estimator. Their proposed class of density power divergences is indexed by a single parameter o
which controls the trade-off between robustness and efficiency. In this article, (1) we introduce a new large class of
the minimum squared distance which includes from the minimum Hellinger distance to the minimum L, distance.
We also show that under certain conditions both the minimum density power divergence estimator(MDPDE) and
the minimum squared distance estimator(MSDE) are asymptotically equivalent and (2) in finite samples the
MDPDE performs better than the MSDE in general but there are some cases where the MSDE performs better
than the MDPDE when estimating a location parameter or a proportion of mixed distributions.
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1. Introduction

Basu et al. (1998) proposed a minimum divergence estimating method which used new density-based
divergences. Unlike existing methods of this type such as minimum Hellinger distance estimation
(Beran, 1977; Simpson, 1987; Tamura and Boos, 1986), Basu et al. (1998) avoid the use of nonpara-
metric density estimation and associated complications such as bandwidth selection.

In this paper, a new class of squared distance and the associated estimator, called the minimum
squared distance estimator, are introduced. The Hellinger distance and the ordinary L, distance are
members of the new class. It is shown that the MDPDE and the MSDE are asymptotically equivalent
under model conditions. Empirical studies show that the MDPDE performs better or similar to the
MSDE in terms of mean squared error under most of the distributions considered, but when the true
distribution is heavily contaminated, some advantages of the MSDE are identified.

2. Review of the Minimum Density Power Divergence Estimator

Define the divergence d,(g, f) between density functions g and f to be

1 1
do(g. f) = f {f““(x) - (1 + ;)g(X)f“(X) + ag““(m} dx, (a>0).

When « = 0, the divergence dy(g, f) is defined as

do(g, f) = thiil(l)da(g,f) = fg(x) log{%}dx.
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Note that dy(g, f) is the Kullback-Leiber divergence. Consider a parametric family of models {Fj},
indexed by the unknown parameter 6 (or, a vector of parameters), possessing densities { fp} with respect
to Lebesgue measure. Given a random sample Xj, ..., X, from a distribution G (G may not belong to
{Fg}) , the minimum density divergence estimator & is generated by minimizing

1
f £ (dx (1 + ;)n1 A0

with respect to 6. Then the estimating equations have the form

Un®) = 07" )" ug(X) f5 (Xi) — f uo(2) fy " (2)dz, 2.1)

where uy(z) = dlog fp(z)/00 is the score function. The minimum density power divergence estimators
are in fact M-estimators, and the corresponding ¢ function is

Y(x, 0) = ug(x) f' (x) — f () f ** (x)dx.

The proposed class of ‘density power divergences’ is indexed by a single parameter @ which controls
the trade-off between robustness and efficiency. Choices of @ near zero afford considerable robustness
while retaining efficiency close to that of maximum likelihood.

Theorem 1. (Basu et al., 1998) Suppose that the true density belongs to the parametric family
{fo}, and under certain regularity conditions, there exists 0 such that, as n — oo,

(i) 0 is consistent for 6.

(ii) At the assumed model f,, n''(0 — ) is asymptotically multivariate normal with vector mean zero
and covariance matrix J'KJ™!, where

J= f uo el () [ ()i,
K= f ug@Qup @ f3*  (2)dz—m", n= f up@) f** (2)dz.

Note that, in the limit « — 0, J and K both become equal to the Fisher information 1-'(0), and the
covariance matrix becomes I7'(0).
3. Minimum Squared Distance Estimator: Definition and Asymptotic Results

With G, g, Fy and fj being defined in the preceding section, suppose a random sample X, X, ..., X,
from G, and then we begin this section with a definition of the new family of distances.

Definition 1. Define the squared distance between g and fy to be

1 1 2
dy(g. f) = f {gf*(x)—ff(X)} dx,

indexed by B € [1,2]. The minimum squared distance estimator 0, as the value at 8, of a functional
T, is defined as

1 1 2
0=1@) =min [ {2h0o- 1) ) ax
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where g, is a suitable density estimator for g

8n = (ncysy)™! Zn: w (s (= X0

i=1

{cn} being a sequence of constants to zero at an appropriate rate, s, being a scale estimator, and w
being a smooth density on the real line. If § = 2, dg(g, fy) is the Hellinger distance and if = 1, it
becomes L,-distance.

Theorem 2. Suppose
(i) w is absolutely continuous and has compact support; w' and w" are bounded.
(ii) g is uniformly and absolutely continuous and g"’" is bounded and g > 0.

2¢, = 00 and lim,_« nl/zcﬁ =0.

(iii) 1im,—eo ¢z = 0, lim,—o n!/
(iv) Asn — oo, 5, —, s a positive finite constant depending on g.

(v) ug,up, uy are bounded by the functions of x , whose expectation w. 1. t. fy should be finite,

then n*'2(, — 0) is asymptotically multivariate normal with mean zero and covariance matrix J(g)™"
K(g)J(g)~", where

K(g) = f up(Oul () 57 2(0)g(x)dx — ngnl and 1 = f up(0) 57 (x)g(x)dx.

and

-2 2 2 1 1 | 1
J(g) = fﬂ_zu”(x)”g(x)ff (x)dx + f? {u;(x) + Eug(x)ug(x)} fgﬂ (x) {gB(x) - faﬁ (x)} dx.

Furthermore, at the model n'’*(6, — 0) is asymptotically multivariate normal with mean zero and
covariance matrix J~'KJ™!, where

J= f ug(x)ug(x)ff(x)dx 3.1
K= f (el () f5 7 (X)dx = ngml, e = f () f7 (x)dx. (3.2)

In the limit 8 — 2, J and K both become the Fisher Information I ~1(), the covariance matrix becomes
I1(6).

Proof: || g,(x) — g(x) ||£> 0 as n — oo by the proof of Theorem 2 in Beran (1977). Note that by the
Taylor we have the approximation

2 2 2 2
20 (0) = g7 (1) + (8(x) — g(x)) Bgﬁ‘%x),
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so that

20 - gh ()

lim sup f

dx = lim sup f 12,(x) — g(x)l%gl%_l(x)dx

n—oo

< limsup f 12,(x) — g(x)ldx — 0.

n—oo

That is, || 827 — g2# |5 0 as n — co. Rewrite g'/A(x) as (g2/(x))'/? and let g2#(x) and 2/ (x) play a
role of g(x) and g, in the proof of Theorem 3 in Beran (1977). Therefore, we have the results. O

Remark 1. By the Theorem 1 and the Theorem 2, both the the MDPDE and the MSDE have the
same asymptotic distribution if @ = 2/8 — 1.

4. Simulations
4.1. Location parameter

The performance of the the MDPDE and the MSDE for estimating a location parameter u of N(u, 1)
in a small sample Monte Carlo study are presented in Table 1. The model distribution was standard
normal, and the true distributions, where samples were generated, were

o standard normal distribution, denoted by N(0, 1),

e a contaminated standard normal distribution with 10% contamination of N(3,1), denoted by
10%3N,

a contaminated standard normal distribution with 30% contamination of N(3, 1), denoted by
30%3N,

e a contaminated standard normal distribution with 10% contamination of Uniform distribution
U(-3,3), denoted by 10% + 3U,

t-distribution with 5 d.f., denoted by #(5) and

Uniform distribution U(-3, 3).

The Epanechnikov kernel, (3/4)(1 — £2/5)/ V51 \5.v5(D) (Silverman, 1986) is used for calculating
the MSDE. For simulations, 8 = 3/2, which is in the middle of [1, 2], is chosen for MSDE, therefore
MDPDE is calculated with @ = 1/3. The 500 random samples of size 10, 20 and 50 were generated
from the true distributions, and the MDPDE and the MSDE for various window widths (2 = 1.0, 1.5
and 2.0) were calculated. Both the MDPDE and MSDE perform similar in terms of bias and/or mean
square error. However, under asymmetric distributions such as 30%3N and 10% + U we can find the
cases where the MSDE performs better than the MDPDE. It can be said when the data are from an
heavily asymmetric true distribution, a kernel density estimator is more appropriate in constituting
a distance with the model density N(0, 1), that is, the effect of smoothing data seems very useful in
reducing biases and/or mean square in most cases (Table 1).
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Table 1: MDPDE and MSDE for a location under various distributions
No. of . .. distribution
Obs, ~ cstimator  stalistics  —gm———10%38 30%3N 10% = 30 7 30
bias —0016  —.0071 362 0175 0345 —.0248
MDPDE m.s.e. 0976 1099 3754 1341 1290 1290
MSDE Bias 0056 —.0038 7306 004 0278 0402
10 h=10 ms.e. 1181 1274 4416 1529 1733 1.6438
MSDE Bias 0013 0040 3310 0184 0340 0370
h=15 ms.e. 1062 1158 11 1425 1823 13397
MSDE bias ~0136 0016 3590 0166 0338 0322
h=20 ms.e. 1193 1117 4327 1367 1766 12471
bias 0026 0264 4755 0235 ~0071  —.0200
MDPDE ms.e. 0540 0632 3240 1031 0691 4415
MSDE Bias 0038 0148 3660 0284 —0078 0204
- h=10 ms.e. 0588 0654 2850 0803 0728 1.0554
MSDE bias 0033 0132 3838 0278 10098 0240
h=15 ms.e. 0559 0637 2929 0726 0719 9706
MSDE Bias 0030 0110 2044 0340 —00%6 0158
h=20 ms.e. 0552 0633 3014 0687 0723 9083
bias 0112 0340 5064 0216 ~0023 0216
MDPDE m.s.e. 0212 0286 3002 0286 0288 2392
MSDE bias 0121 0156 3502 0134 —0072 018
- h=10 ms.e. 0222 0278 1837 0265 0307 6023
MSDE Bias 0116 0210 3636 0124 —0066 0362
h=15 ms.e. 0218 0283 1907 0262 0311 5549
MSDE Bias 0114 0242 3798 0122 —0072 0404
h=20 ms.e. 0217 0285 2007 0259 0305 5204
Table 2: MDPDE and MSDE for a proportion under various distributions; for example, 30%1N implies a
mixture density as 0.7N(0, 1) + 0.3N(1, 1).
No. of . . mixing density
Obs. estimator - SWUSUCS  —mor—5he Ty 30%3N 30%3N  30%5N  509%5N
bias 236 -2513 —.0869 0907 —.0379  —.0408
MDFDE . ce. 0559 0964 0295 0116 0023 0026
MSDE Bias 0634 0322 0096 0023 ~0010 10005
0 h=10 mas.e. 0681 0851 0101 0111 0040 0042
MSDE Dias 0531 0150 0115 0036 —.0007 10002
h=15 ms.e. 0643 0773 0075 0080 0022 0030
MSDE bias 0558 —.0048 0107 0026 —.0014 0001
h=20 mas.e. 0645 0209 0072 0071 0022 0021
bias 0073 —.0138 10026 10050 0014 0017
MDPDE — oe. 0410 0490 0037 0036 0005 0007
MSDE bias 0300 —.0053 0066 0010 —.0035 0010
20 h=10 mas.e. 0411 0518 0041 0043 0013 0013
MSDE Bias 0340 —0010 0074 0034 —.0008 0010
h=15 m.s.e. 0386 0495 0038 0043 0009 0011
MSDE bias 0387 —.0063 0103 0040 10006 0011
h=20 ms.e. 0367 0418 0033 0036 0008 0009
bias 0044 0055 10003 ~0031 0010 —.0003
MDPDE — ce. 0204 0209 0014 0016 0001 0003
MSDE Bias 0184 0059 0018 0026 0001 0003
% h=10 ms.e. 0195 0209 0015 0017 0003 0004
MSDE bias 10205 0044 0053 ~0006  —.0002 0010
h=15 ms.e. 0175 0196 0014 0016 0004 0004
MSDE bias 0298 0040 Ol 0011 0016 0010
h=120 ms.e. 0161 0182 0014 0017 0002 0004
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Figure 1: Empirical density, kernel density and standard normal density (dotted line): a model density is N(0, 1),
a true density is (a) 30%3N and (b) £3U.

4.2. Mixture proportion

Consider the estimation of the proportions 6, ..., 6, in the mixture density

Jo(x) = 01 f1(x) + 02 f2(%) + - - + Oy fin(X),

where 6 = {6;,...,0,} and fi(x),..., fi.(x) are densities. Here, once again @ = 1/3 and 8 = 3/2 are
used for the MDPDE and the MDSE, respectively. In order to see the performance of MDPDE and
MSDE for estimating proportions, simulations were carried out with 500 random samples of sizes,
10, 20 and 50, generated from 30% and 50% mixtures of two normals, N(0, 1) with N(1,1),N(3,1)
and N(5, 1), respectively (Table 2).

We have discovered that the MSDE is consistently better than the MDPDE in terms of having
smaller bias and mean squared error when the level of contamination is high like 50% and the mixing
distribution is far from N(0, 1) like N(5, 1).

5. Conclusion

The minimum density power divergence estimators and the minimum squared distance estimators are
asymptotically equivalent with @« = 2/8 — 1. Though the former performs better than the latter in
general, some advantages of the latter over the former are identified when the true density is heavily
contaminated or asymmetric. The magnitude of asymptotic statistics, say K(g) and J(g), depend on
the closeness of a model density and a density estimator for a true density. Since the true density is
estimated by an empirical density for the MDPDE and by an smoothed (kernel) density estimator for
the MSDE, if a true density is better estimated by a smoothed (kernel) density estimator than by an
empirical density the MSDE would perform better than the MDPDE. If, for example,a true density is
30%3N, a kernel density is closer to the normal density near the interval where contaminations take
place (Figure 1(a)), but if a true density is +3U, a kernel density overestimate on both ends while an
empirical density fits the normal density within it’s boundary (Figure 1(b)). Hence, we can claim that
the MSDE performs better than MDPDE when the true density is 30%3N while it is reversed when
the true density is +£3U. However, we have to admit that the MSDE may not prevail the MDPDE as
long as we consider the cost of choosing a bandwidth. Though we have to pay the cost of choosing a
bandwidth, it is also should be admitted that there are still some cases where smoothing is mattered.
As a future research, it remains to identify and verify the conditions which a smoothed (kernel) density
estimator outperform an empirical density in estimating a true density.
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