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Abstract
Basu et al. (1998) proposed the minimum divergence estimating method which is free from using the painful

kernel density estimator. Their proposed class of density power divergences is indexed by a single parameter α
which controls the trade-off between robustness and efficiency. In this article, (1) we introduce a new large class of
the minimum squared distance which includes from the minimum Hellinger distance to the minimum L2 distance.
We also show that under certain conditions both the minimum density power divergence estimator(MDPDE) and
the minimum squared distance estimator(MSDE) are asymptotically equivalent and (2) in finite samples the
MDPDE performs better than the MSDE in general but there are some cases where the MSDE performs better
than the MDPDE when estimating a location parameter or a proportion of mixed distributions.
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1. Introduction

Basu et al. (1998) proposed a minimum divergence estimating method which used new density-based
divergences. Unlike existing methods of this type such as minimum Hellinger distance estimation
(Beran, 1977; Simpson, 1987; Tamura and Boos, 1986), Basu et al. (1998) avoid the use of nonpara-
metric density estimation and associated complications such as bandwidth selection.

In this paper, a new class of squared distance and the associated estimator, called the minimum
squared distance estimator, are introduced. The Hellinger distance and the ordinary L2 distance are
members of the new class. It is shown that the MDPDE and the MSDE are asymptotically equivalent
under model conditions. Empirical studies show that the MDPDE performs better or similar to the
MSDE in terms of mean squared error under most of the distributions considered, but when the true
distribution is heavily contaminated, some advantages of the MSDE are identified.

2. Review of the Minimum Density Power Divergence Estimator

Define the divergence dα(g, f ) between density functions g and f to be

dα(g, f ) =

∫ {
f 1+α(x) −

(
1 +

1
α

)
g(x) f α(x) +

1
α

g1+α(x)
}

dx, (α > 0).

When α = 0, the divergence d0(g, f ) is defined as

d0(g, f ) = lim
α→0

dα(g, f ) =

∫
g(x) log

{
g(x)
f (x)

}
dx.
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Note that d0(g, f ) is the Kullback-Leiber divergence. Consider a parametric family of models {Fθ},
indexed by the unknown parameter θ (or, a vector of parameters), possessing densities { fθ}with respect
to Lebesgue measure. Given a random sample X1, . . . , Xn from a distribution G (G may not belong to
{Fθ}) , the minimum density divergence estimator θ̂ is generated by minimizing

∫
f 1+α
θ (x)dx −

(
1 +

1
α

)
n−1

∑
f αθ (Xi)

with respect to θ. Then the estimating equations have the form

Un(θ) ≡ n−1
∑

uθ(Xi) f αθ (Xi) −
∫

uθ(z) f 1+α
θ (z)dz, (2.1)

where uθ(z) = ∂ log fθ(z)/∂θ is the score function. The minimum density power divergence estimators
are in fact M-estimators, and the corresponding ψ function is

ψ(x, θ) = uθ(x) f αθ (x) −
∫

uθ(x) f 1+α
θ (x)dx.

The proposed class of ‘density power divergences’ is indexed by a single parameter α which controls
the trade-off between robustness and efficiency. Choices of α near zero afford considerable robustness
while retaining efficiency close to that of maximum likelihood.

Theorem 1. (Basu et al., 1998) Suppose that the true density belongs to the parametric family
{ fθ}, and under certain regularity conditions, there exists θ̂ such that, as n→ ∞,

(i) θ̂ is consistent for θ.

(ii) At the assumed model fθ, n1/2(θ̂ − θ) is asymptotically multivariate normal with vector mean zero
and covariance matrix J−1KJ−1, where

J =

∫
uθ(z)uT

θ (z) f 1+α
θ (z)dz,

K =

∫
uθ(z)uT

θ (z) f 2α+1
θ (z)dz − ηηT , η =

∫
uθ(z) f α+1(z)dz.

Note that, in the limit α → 0, J and K both become equal to the Fisher information I−1(θ), and the
covariance matrix becomes I−1(θ).

3. Minimum Squared Distance Estimator: Definition and Asymptotic Results

With G, g, Fθ and fθ being defined in the preceding section, suppose a random sample X1, X2, . . . , Xn

from G, and then we begin this section with a definition of the new family of distances.

Definition 1. Define the squared distance between g and fθ to be

dβ(g, fθ) =

∫ {
g

1
β (x) − f

1
β

θ (x)
}2

dx,

indexed by β ∈ [1, 2]. The minimum squared distance estimator θ̂, as the value at ĝn of a functional
T , is defined as

θ̂ = T (ĝn) = min
θ

∫ {
ĝ

1
β

n (x) − f
1
β

θ (x)
}2

dx,
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where ĝn is a suitable density estimator for g

ĝn = (ncnsn)−1
n∑

i=1

w
[
(cnsn)−1(x − Xi)

]
,

{cn} being a sequence of constants to zero at an appropriate rate, sn being a scale estimator, and w
being a smooth density on the real line. If β = 2, dβ(g, fθ) is the Hellinger distance and if β = 1, it
becomes L2-distance.

Theorem 2. Suppose

(i) w is absolutely continuous and has compact support; w′ and w′′ are bounded.

(ii) g is uniformly and absolutely continuous and g′′ is bounded and g > 0.

(iii) limn→∞ cn = 0, limn→∞ n1/2cn = ∞ and limn→∞ n1/2c2
n = 0.

(iv) As n→ ∞, sn →p s a positive finite constant depending on g.

(v) uθ, u′θ, u
′′
θ are bounded by the functions of x , whose expectation w. r. t. fθ should be finite,

then n1/2(θ̂n − θ) is asymptotically multivariate normal with mean zero and covariance matrix J(g)−1

K(g)J(g)−1, where

K(g) =

∫
uθ(x)uT

θ (x) f
4
β−2(x)g(x)dx − ηθηT

θ and ηθ =

∫
uθ(x) f

2
β−1(x)g(x)dx.

and

J(g) =

∫ −2
β2 uθ(x)uT

θ (x) f
2
β

θ (x)dx +

∫ −2
β

{
u′θ(x) +

1
β

uθ(x)uT
θ (x)

}
f

1
β

θ (x)
{
g

1
β (x) − f

1
β

θ (x)
}

dx.

Furthermore, at the model n1/2(θ̂n − θ) is asymptotically multivariate normal with mean zero and
covariance matrix J−1KJ−1, where

J =

∫
uθ(x)uT

θ (x) f
2
β

θ (x)dx (3.1)

K =

∫
uθ(x)uT

θ (x) f
4
β−1(x)dx − ηθηT

θ , ηθ =

∫
uθ(x) f

2
β (x)dx. (3.2)

In the limit β→ 2, J and K both become the Fisher Information I−1(θ), the covariance matrix becomes
I−1(θ).

Proof: ‖ ĝn(x) − g(x) ‖ p→ 0 as n → ∞ by the proof of Theorem 2 in Beran (1977). Note that by the
Taylor we have the approximation

ĝ
2
β

n (x) ≈ g
2
β (x) + (ĝn(x) − g(x))

2
β

g
2
β−1(x),
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so that

lim sup
n→∞

∫ ∣∣∣∣∣ĝ
2
β

n (x) − g
2
β (x)

∣∣∣∣∣ dx = lim sup
n→∞

∫
|ĝn(x) − g(x)|2

β
g

2
β−1(x)dx

≤ lim sup
n→∞

∫
|ĝn(x) − g(x)|dx→ 0.

That is, ‖ ĝ2/β
n − g2/β ‖ p→ 0 as n→ ∞. Rewrite g1/β(x) as (g2/β(x))1/2 and let g2/β(x) and ĝ2/β

n (x) play a
role of g(x) and ĝn in the proof of Theorem 3 in Beran (1977). Therefore, we have the results. ¤

Remark 1. By the Theorem 1 and the Theorem 2, both the the MDPDE and the MSDE have the
same asymptotic distribution if α = 2/β − 1.

4. Simulations

4.1. Location parameter

The performance of the the MDPDE and the MSDE for estimating a location parameter µ of N(µ, 1)
in a small sample Monte Carlo study are presented in Table 1. The model distribution was standard
normal, and the true distributions, where samples were generated, were

• standard normal distribution, denoted by N(0, 1),

• a contaminated standard normal distribution with 10% contamination of N(3, 1), denoted by
10%3N,

• a contaminated standard normal distribution with 30% contamination of N(3, 1), denoted by
30%3N,

• a contaminated standard normal distribution with 10% contamination of Uniform distribution
U(−3, 3), denoted by 10% ± 3U,

• t-distribution with 5 d.f., denoted by t(5) and

• Uniform distribution U(−3, 3).

The Epanechnikov kernel, (3/4)(1 − t2/5)/
√

5I−√5,
√

5(t) (Silverman, 1986) is used for calculating
the MSDE. For simulations, β = 3/2, which is in the middle of [1, 2], is chosen for MSDE, therefore
MDPDE is calculated with α = 1/3. The 500 random samples of size 10, 20 and 50 were generated
from the true distributions, and the MDPDE and the MSDE for various window widths (h = 1.0, 1.5
and 2.0) were calculated. Both the MDPDE and MSDE perform similar in terms of bias and/or mean
square error. However, under asymmetric distributions such as 30%3N and 10% ± U we can find the
cases where the MSDE performs better than the MDPDE. It can be said when the data are from an
heavily asymmetric true distribution, a kernel density estimator is more appropriate in constituting
a distance with the model density N(0, 1), that is, the effect of smoothing data seems very useful in
reducing biases and/or mean square in most cases (Table 1).
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Table 1: MDPDE and MSDE for a location under various distributions
No. of estimator statistics distribution
Obs. N(0, 1) 10%3N 30%3N 10% ± 3U t5 ±3U

MDPDE bias −.0016 −.0071 .4362 .0175 .0345 −.0248
m.s.e. .0976 .1099 .3754 .1341 .1290 .1290

MSDE bias .0056 −.0038 .2806 .0224 .0278 .0402

10 h = 1.0 m.s.e. .1181 .1274 .4416 .1529 .1733 1.6438
MSDE bias .0013 .0040 .3310 .0184 .0340 .0370
h = 1.5 m.s.e. .1062 .1158 .4311 .1425 .1823 1.3397
MSDE bias −.0136 .0016 .3590 .0166 .0338 .0322
h = 2.0 m.s.e. .1193 .1117 .4327 .1367 .1766 1.2471

MDPDE bias .0026 .0264 .4755 .0235 −.0071 −.0200
m.s.e. .0540 .0632 .3240 .1031 .0691 .4415

MSDE bias .0038 −.0148 .3660 .0284 −.0078 .0204

20 h = 1.0 m.s.e. .0588 .0654 .2850 .0803 .0728 1.0554
MSDE bias .0033 .0132 .3888 .0278 .0098 .0240
h = 1.5 m.s.e. .0559 .0637 .2929 .0726 .0719 .9706
MSDE bias .0030 .0110 .4044 .0340 −.0086 .0158
h = 2.0 m.s.e. .0552 .0633 .3014 .0687 .0723 .9083

MDPDE bias .0112 .0340 .5064 .0216 −.0023 .0216
m.s.e. .0212 .0286 .3002 .0286 .0288 .2392

MSDE bias .0121 .0156 .3522 .0134 −.0072 .0218

50 h = 1.0 m.s.e. .0222 .0278 .1837 .0265 .0307 .6023
MSDE bias .0116 .0210 .3636 .0124 −.0066 .0362
h = 1.5 m.s.e. .0218 .0283 .1907 .0262 .0311 .5549
MSDE bias .0114 .0242 .3798 .0122 −.0072 .0404
h = 2.0 m.s.e. .0217 .0285 .2007 .0259 .0305 .5204

Table 2: MDPDE and MSDE for a proportion under various distributions; for example, 30%1N implies a
mixture density as 0.7N(0, 1) + 0.3N(1, 1).

No. of estimator statistics mixing density
Obs. 30%1N 50%1N 30%3N 50%3N 30%5N 50%5N

MDPDE bias −.2326 −.2513 −.0869 −.0907 −.0379 −.0408
m.s.e. .0559 .0964 .0295 .0116 .0023 .0026

MSDE bias .0634 .0322 .0096 .0023 −.0010 .0005

10 h = 1.0 m.s.e. .0681 .0851 .0101 .0111 .0040 .0042
MSDE bias .0531 .0150 .0115 .0036 −.0007 .0002
h = 1.5 m.s.e. .0643 .0773 .0075 .0080 .0022 .0030
MSDE bias .0558 −.0048 .0107 −.0026 −.0014 .0001
h = 2.0 m.s.e. .0645 .0209 .0072 .0071 .0022 .0021

MDPDE bias .0073 −.0138 .0026 .0050 .0014 .0017
m.s.e. .0410 .0490 .0037 .0036 .0005 .0007

MSDE bias .0309 −.0053 .0066 .0010 −.0035 .0010

20 h = 1.0 m.s.e. .0411 .0518 .0041 .0043 .0013 .0013
MSDE bias .0340 −.0010 .0074 .0034 −.0008 .0010
h = 1.5 m.s.e. .0386 .0495 .0038 .0043 .0009 .0011
MSDE bias .0387 −.0063 .0103 .0040 .0006 .0011
h = 2.0 m.s.e. .0367 .0418 .0033 .0036 .0008 .0009

MDPDE bias .0044 .0055 .0003 −.0031 .0010 −.0003
m.s.e. .0204 .0209 .0014 .0016 .0001 .0003

MSDE bias .0184 .0059 .0018 .0026 .0001 .0003

50 h = 1.0 m.s.e. .0195 .0209 .0015 .0017 .0003 .0004
MSDE bias .0205 .0044 .0053 −.0006 −.0002 .0010
h = 1.5 m.s.e. .0175 .0196 .0014 .0016 .0004 .0004
MSDE bias .0298 .0040 .0111 .0011 .0016 −.0010
h = 2.0 m.s.e. .0161 .0182 .0014 .0017 .0002 .0004
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Figure 1: Empirical density, kernel density and standard normal density (dotted line): a model density is N(0, 1),
a true density is (a) 30%3N and (b) ±3U.

4.2. Mixture proportion

Consider the estimation of the proportions θ1, . . . , θm in the mixture density

fθ(x) = θ1 f1(x) + θ2 f2(x) + · · · + θm fm(x),

where θ = {θ1, . . . , θm} and f1(x), . . . , fm(x) are densities. Here, once again α = 1/3 and β = 3/2 are
used for the MDPDE and the MDSE, respectively. In order to see the performance of MDPDE and
MSDE for estimating proportions, simulations were carried out with 500 random samples of sizes,
10, 20 and 50, generated from 30% and 50% mixtures of two normals, N(0, 1) with N(1, 1),N(3, 1)
and N(5, 1), respectively (Table 2).

We have discovered that the MSDE is consistently better than the MDPDE in terms of having
smaller bias and mean squared error when the level of contamination is high like 50% and the mixing
distribution is far from N(0, 1) like N(5, 1).

5. Conclusion

The minimum density power divergence estimators and the minimum squared distance estimators are
asymptotically equivalent with α = 2/β − 1. Though the former performs better than the latter in
general, some advantages of the latter over the former are identified when the true density is heavily
contaminated or asymmetric. The magnitude of asymptotic statistics, say K(g) and J(g), depend on
the closeness of a model density and a density estimator for a true density. Since the true density is
estimated by an empirical density for the MDPDE and by an smoothed (kernel) density estimator for
the MSDE, if a true density is better estimated by a smoothed (kernel) density estimator than by an
empirical density the MSDE would perform better than the MDPDE. If, for example,a true density is
30%3N, a kernel density is closer to the normal density near the interval where contaminations take
place (Figure 1(a)), but if a true density is ±3U, a kernel density overestimate on both ends while an
empirical density fits the normal density within it’s boundary (Figure 1(b)). Hence, we can claim that
the MSDE performs better than MDPDE when the true density is 30%3N while it is reversed when
the true density is ±3U. However, we have to admit that the MSDE may not prevail the MDPDE as
long as we consider the cost of choosing a bandwidth. Though we have to pay the cost of choosing a
bandwidth, it is also should be admitted that there are still some cases where smoothing is mattered.
As a future research, it remains to identify and verify the conditions which a smoothed (kernel) density
estimator outperform an empirical density in estimating a true density.
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