DOI QR코드

DOI QR Code

다변량 자료에서 위치모수에 대한 로버스트 검정

A Robust Test for Location Parameters in Multivariate Data

  • 소선하 (우리은행 리스크모델 적합성검증팀) ;
  • 이동희 (경기대학교 경영학과) ;
  • 정병철 (서울시립대학교 통계학과)
  • 투고 : 20090500
  • 심사 : 20091000
  • 발행 : 2009.12.31

초록

본 논문에서는 다변량 자료의 위치모수에 대한 로버스트 검정 방법으로 유사등변성과 고붕괴성을 만족하는 MVE와 MCD 추정량에 근거한 로버스트 검정방법을 제안하였다. 일반적으로 이들 추정방법은 낮은 효율성으로 인하여 통계적 추론보다는 잠재적 이상치의 발견과 같은 탐색적분석에서 사용된다. 우리는 검정력을 높이기 위하여 MVE와 MCD 추정량에 근거한 일단계 재가중절차를 사용했는데, 가중치 선정과 관련된 임계값을 조절함으로써 현실적으로 사용가능한 높은 효율성과 정확성을 갖춘 검정방법을 제시하였다. 모의실험 결과 본 연구에서 제안한 검정법은 모분포에 관계없이 모두 명목유의수준을 제대로 유지하고 검정력도 높게 나타났으며, 이상치를 포함하고 있는 사례를 이용하여 실제로 모평균에 대한 가설검정을 수행한 결과 기존 방법과는 달리 영향을 받지 않았다.

This work propose a robust test for location parameters in multivariate data based on MVE and MCD with the affine equivariance and the high-breakdown properties. We consider the hypothesis testing satisfying high efficiency and high test power simultaneously to bring in the one-step reweighting procedure upon high-breakdown estimators, which generally suffer from the low efficiency and, as a result, usually used only in the exploratory analysis. Monte Carlo study shows that the suggested method retains nominal significance levels and higher testing power without regard to various population distributions than a Hotelling's $T^2$ test. In an example, a data set containing known outliers does not make an influence toward our proposal, while it renders a Hotelling's $T^2$ useless.

키워드

참고문헌

  1. 김기영, 전명식 (2002). <다변량 통계자료분석>, 자유아카데미
  2. Brown, B. M. (1983). Statistical uses of the spatial median, Journal of the Royal Statistical Society B, 45, 25–30
  3. Butler, R. W., Davies, P. L. and Jhun, M. (1993). Asymptotic for minimum covariance determinant estimator, The Annals of Statistics, 21, 1385–1400
  4. Chakraborty, B., Chaudhuri, P. and Oja, H. (1998). Operating transformation retransformation on spatial median and angle test, Statistica Sinica, 8, 767–784
  5. Davies, P. P. (1992). The asymptotics of Rousseeuw's minimum volume ellipsoid estimator, The Annals of Statistics, 20, 1828–1843 https://doi.org/10.1214/aos/1176348891
  6. Fung, W. K. (1993). Unmasking outliers and leverage points: A confirmation, Journal of the American Statistical Association, 88, 515–519
  7. Hawkins, D. M., Bradu, D. and Kass, G. V. (1984). Location of several outliers in multiple regression data using elemental sets, Technometrics, 26, 197–208
  8. Hawkins, D. M. and Olive, D. J. (2002). Inconsistency of resampling algorithm for high-breakdown estimators and a new algorithm, Journal of the American Statistical Association, 97, 136–148
  9. He, X. and Portnoy, S. (1992). Reweighted LS estimators converge at the same rate as the initial estimator, The Annals of Statistics, 20, 2161–2167
  10. Huber, P. J. (1981). Robust Statistics, John Wiley & Sons, New York
  11. Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics: Theory and Methods, John Wiley & Sons, New York
  12. Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point, Mathematical Statistics and its applications (vol. B), W. Grossmann, G. Pflug, I. Vinczc and W. Wertz (eds.), 283–297, Reidel, Dordrecht
  13. Rousseeuw, P. J. and van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points, Journal of the American Statistical Association, 85, 633–639
  14. Somorcik, J. (2006). Tests using spatial median, Austrian Journal of Statistics, 35, 331–338
  15. Utts, J. M. and Hettmansperger, T. P. (1980). A robust class of tests and estimates for multivariate location, Journal of the American Statistical Association, 75, 939–946