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Abstract

For stratifying skewed populations, the Lavallée-Hidiroglou(LH) algorithm is often considered to have a

take-all stratum with the largest units and some take-some strata with the middle-size and small units.

Related to its iterative nature have been reported some numerical difficulties such as the dependency of the

ultimate stratum boundaries to a choice of initial boundaries and the slow convergence to locally-optimum

boundaries. The geometric stratification has been recently proposed to provide initial boundaries that can

avoid such numerical difficulties in implementing the LH algorithm. Since the geometric stratification does

not pursuit the optimization but the equalization of the stratum CVs, the corresponding stratum boundaries

may not be (near) optimal. This paper revisits these issues concerning convergence and near-optimality of

optimal stratification algorithms using artificial numerical examples. We also discuss the formation of the

strata and the sample allocation under the optimization process and some aspects related to discontinuity

arisen from the finiteness of both population and sample as well.

Keywords: Lavallée-Hidiroglou(LH) algorithm, geometric stratification, random search algorithm, stra-

tum boundaries, optimization.

1. Introduction

In many economic surveys, data are usually positively skewed so that a small number of large units

account for the most share of the population total of a study variable. Thus, it is more appealing

to survey planners to have a take-all stratum with the largest units and some take-some strata with

the middle-size and small units. See, for example, Sigman and Monsour (1995) and Slanta and

Krenzke (1996).

The LH algorithm (Lavallée and Hidiroglou, 1988) is aimed to implement the above sampling design

scheme in the stratification. The algorithm iteratively updates stratum boundaries (or breaks) based

on the stratum boundary formulas that are driven to minimize the total sample size for a target

CV(coefficient of variation), where any sample allocation rule can be built-in through the stratum

sample sizes.
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A few numerical difficulties, however, have been addressed in relation to the LH algorithm. Slanta

and Krenzke (1996), for example, encountered two problems: the dependency of the ultimate bound-

aries to a choice of initial boundaries and the slow convergence to locally-optimum boundaries. Gun-

ning et al. (2008) argued that the boundaries obtained from the geometric progression can avoid

such numerical difficulties since they are already near the optimum boundaries. The geometric strat-

ification is to provide stratum boundaries so as to have equal stratum CVs of the design variable

assuming that the stratification variable is uniformly distributed within strata. For the details, see

Gunning and Hogan (2004). Hogan (2006) further argued that “none incorporated the equality of

the coefficients of variation in deriving their algorithms; had they done so, they would have arrived

at a definitive simple algorithm of getting stratum breaks using the geometric progression: free of

implementation problems caused by having to choose initial values for iterative procedures, free of

convergence problems inherent in iterative procedures, and free of the arbitrariness of grouping into

initial classes.” However, Kozak and Verma (2006) pointed out that the geometric stratification

algorithm does not pursuit the optimization but the equalization of the stratum CVs, thus not

necessarily being (near) optimal. They further addressed that a construction of a take-all stratum

is not considered in the development of the geometric stratification.

In this paper, we revisit the above issues. In Section 2, we briefly overview the stratified random

sampling design. In Section 3, we discuss two optimum stratification algorithms, the LH algorithm

and its alterative proposed by Kozak (2004) and Kozak and Verma (2006) and also discuss the

geometric stratification algorithm. In Section 4, we compare these algorithms concerning their

convergence and near-optimality using artificial numerical examples. A summary is given in Section

5.

2. Stratified Random Sampling Design

Consider that a sample of size n is to be selected from the population U = {i : i = 1, . . . , N} of size

N to estimate a population mean X̄ = (x1 + · · ·+ xN )/N of the design variable x (or an auxiliary

variable that may be closely related to a study variable). When the distribution of x is positively

skewed, survey planners often adopt a stratified random sampling design in a way that a take-all

stratum consists of the largest units and some take-some strata of the middle-size and small units.

Suppose that the population is divided into H strata, which is assumed to be given a priori for

simplifying our discussion. Then, the strata can be defined with a total of H−1 stratum boundaries

k1 < · · · < kh < · · · < kH−1 as

Uh = {i : kh−1 < xi ≤ kh} (2.1)

of size Nh, where k0 = −∞, kH = ∞ and N =
∑H

h=1 Nh.

The largest stratum H is taken as the take-all stratum and a simple random sample of size

nh = (n−NH)ah (2.2)

is selected independently from each of the H − 1 take-some strata with the sample allocation rule

ah. For example, under Neyman allocation, the sample allocation rates for the H − 1 take-some

strata are determined as

ah =
NhSh

H−1∑
h=1

NhSh

(2.3)
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and, under power allocation,

ah =
(NhX̄h)

p

H−1∑
h=1

(NhX̄h)p
(2.4)

for 0 < p ≤ 1. The total sample size is n =
∑H−1

h=1 nh +NH .

A stratified mean estimator is x̄str =
∑H

h=1 Whx̄h and its variance is

Vstr(x̄str) =

H−1∑
h=1

W 2
hVsrs(x̄h), (2.5)

where Wh = Nh/N is the stratum weight, Vsrs(x̄h) = (1 − fh)n
−1
h S2

h is the variance of the

stratum sample mean x̄h = n−1
h

∑nh
i=1 xhi, fh = nh/Nh is the stratum sampling fraction, and

X̄h = N−1
h

∑Nh
i=1 xhi and S2

h = (Nh − 1)−1 ∑Nh
i=1(xhi − X̄h)

2 are the stratum mean and variance of

x, respectively.

Expression (2.5) indicates that the efficiency of the stratified random sampling design depends on

(1) the choice of the stratum boundaries(kh) and (2) the sample allocation(nh), since the form-

ers determines the stratum homogeneity breaks(S2
h) of the finite population U and the latter the

sample information shares among strata(ah). Furthermore, by solving Vstr(x̄str) in (2.5) for n, the

coefficient of variation of the mean estimator x̄str can be obtained at the level of c with the total

sample size

n = NH +

H−1∑
h=1

W 2
hS

2
h

ah

c2X̄2 +
H−1∑
h=1

WhS
2
h

N

. (2.6)

That is, Vstr(x̄str) = c2X̄2 with the sample size n in (2.6).

3. Stratification Algorithms

3.1. The LH algorithm

Lavallée and Hidiroglou (1988) suggested an iterative algorithm that searches for stratum bound-

aries that minimizes n in (2.6) (for a required CV at c). Note that n is a function of stratum

quantities Wh, X̄h, Sh and allocation rule ah. If the allocation rule ah is determined based on

stratum quantities as in (2.3) or (2.4), then n is also a function of the H − 1 stratum boundaries

k = (k1, . . . , kh, . . . , kH−1)
′:

n = n(k), (3.1)

since Uh and thus kh in (2.1) determines the aforementioned stratum quantities. Therefore, the

optimum boundaries can be obtained by solving the first derivatives of n with respect to kh at zero:

∂n(k)

∂k1
= · · · = ∂n(k)

∂kh
= · · · = ∂n(k)

∂kH−1
= 0. (3.2)

Equations (3.2) can be rewritten as a series of quadratic equations in kh in the following form:

αhk
2
h + βhkh + γh = 0. (3.3)
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The larger roots of equations (3.3) are taken as the solutions that can be obtained iteratively because

n and thus the coefficients αh, βh and γh are all functions of k.

For a given set of initial boundaries k(0) = (k
(0)
1 , . . . , k

(0)
h . . . , k

(0)
H−1)

′, the coefficients α
(0)
h , β

(0)
h and

γ
(0)
h are computed first based on Uh(k

(0)) and the boundaries are then replaced by

k
(1)
h =

−β
(0)
h +

√(
β
(0)
h

)2

− 4α
(0)
h γ

(0)
h

2α
(0)
h

.

This process is continued until k(r)(r = 1, 2, . . .) converge. See Lavallée and Hidiroglou (1988) and

Rivest (2002) for the details.

3.2. The random search algorithm

Kozak (2004) and Kozak and Verma (2006) suggested an alternative optimization algorithm to the

LH algorithm, where, in each iteration, a stratum and its boundary are changed in a random fashion

provided that a chosen objective function gets improved. The algorithm can be described using an

alternative definition of the strata based on the indices of units in the population as follows:

Uh = {i : bh−1 < i ≤ bh}, (3.4)

where b0 = 0 and bH = N . In other words, the strata can be defined using the indices that are

assigned to units in the ascending order of the associated x values in the population U . Both kh
and bh in (2.1) and (3.4) are related as follows:

bh
N

≤ FN (x ≤ kh) <
bh + 1

N
, (3.5)

where FN (x ≤ q) denotes the finite population cumulative distribution function of x at q ∈
(−∞,∞). It is clear from expression (3.5) that both n and Vstr(x̄str) are all functions of b =

(b1, . . . , bh, . . . , bH−1)
′.

For a given set of the initial stratum boundaries b(0), the random search algorithm updates the

set b(r−1) iteratively as follows: first, a stratum h is randomly selected among the first H − 1

(take-some) strata. Second, the right-end boundary of the stratum h is replaced by b
(r−1)
h + j if

the objective function gets improved with the resulting strata, where j is a random integer selected

at each iteration from −p to p excluding zero (i.e., no change) and p is a predetermined positive

integer. Kozak (2004) uses the sample size as its objective function for a given level c of CV:

n = n(b). (3.6)

This random search algorithm is simple and flexible in a sense that its objective function can be

replaced by

V = Vstr(x̄str|b) (3.7)

for a given sample size n. See Kozak and Verma (2006).

3.3. Geometric stratification algorithm

Gunning and Horgan (2004) developed a very simple algorithm to determine stratum boundaries

which require no iteration process. Their motivation is based on an observation by Cochran (1961)
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Table 4.1. Summary statistics for four populations

Population Minimum Maximum Skewness Mean Variance

1 10.081 1,695.214 2.137 187.984 179.842

2 86.902 3,272.735 0.812 991.290 438.977

3 1.818 1,173.212 3.757 88.867 109.594

4 10.243 257.549 1.474 61.714 32.258

that “with near optimum boundaries the coefficients of variation are often found to be approximately

the same in all strata.” That is,
S1

X̄1
=

S1

X̄1
= · · · = SH

X̄H
. (3.8)

Assuming further that the distribution of x is uniform within strata, they arrived at the following

relationship k2
h = kh+1kh−1 and thus the stratum boundaries are defined in terms of the geometric

progression:

kh = arh, (3.9)

where a = xmin and r = (xmax/xmin) for h = 0, 1, . . . , H.

4. Numerical Examples

In this section, we examine how efficient the geometric stratification is when its boundaries are used

for the initial evaluation in implementing the LH algorithm, and how the optimal strata are formed

and the sample is allocated into the strata.

4.1. Finite populations

For the study, we generated four populations of the same size N = 3,000. The first two populations

were created from gamma distributions and the other two from lognormal distributions with each

of the pair being slightly different in their skewness. Table 4.1 presents their summary statistics

and Figure 4.1 displays their histograms. The four populations are all positively skewed with their

skewness ranged from 0.812 to 3.757. Populations 1 and 3 are all of the exponential density type.

Populations 2 and 4 are all unimodal with two tails.

4.2. Efficiency of the geometric stratification in implementing the LH algorithm

Four populations are all divided into H = 5 strata. To examine the efficiency of the geometric

stratification in implementing the LH algorithm, we used two sets of the initial stratum boundaries

following Gunning et al. (2008): one by equal-size stratification(ES) and the other by the geometric

progression(GP). We implemented the LH algorithm by using these two sets as the initial boundaries

to obtain the optimal boundaries(LH-ES, LH-GP) with Neyman allocation for a target CV of 1%.

Table 4.2 displays the resulting stratum boundaries. Figure 4.2 also compares those boundaries

for each of the four populations by stratification algorithms. Different starting boundaries lead to

the same ultimate boundaries, indicating no dependency of the ultimate boundaries to a choice of

initial boundaries. The LH algorithm gives the same ultimate boundaries regardless of a choice of

the initial boundaries and of the populations. In addition, the largest boundaries of the geometric

stratification are closer to the optimal boundaries, while the smaller boundaries of the equal-size

stratification are closer to the optimal boundaries. Different from the observation of Gunning et al.
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Figure 4.1. Histograms of four populations

Table 4.2. Comparisons of stratum boundaries

Population
Stratification Stratum boundaries

Algorithm k1 k2 k3 k4
ES 50.198 102.585 171.513 293.710

1
GP 28.096 78.306 218.242 608.249

LH-ES 83.474 179.144 311.467 560.227

LH-GP 83.474 179.144 311.467 560.227

ES 604.165 829.353 1,052.275 1,330.809

2
GP 179.559 371.008 766.583 1,583.926

LH-ES 680.081 1,028.411 1,466.065 2,531.188

LH-GP 680.081 1,028.411 1,466.065 2,531.188

ES 23.737 41.751 70.534 126.734

3
GP 6.632 24.186 88.207 321.692

LH-ES 40.339 84.363 154.369 282.880

LH-GP 40.339 84.363 154.369 282.880

ES 36.285 47.797 62.046 82.531

4
GP 19.521 37.204 70.905 135.135

LH-ES 39.661 59.358 89.183 164.322

LH-GP 39.661 59.358 89.183 164.322

(2008), there is no clear evidence that the geometric strata(GP) are near the optimal(LH).

Recalling that the geometric stratification is to equalize stratum CVs, it would also be interesting

to see how strata are formed by the other two algorithms under consideration as well. Figure 4.3

provides the CVs of the strata constructed by each algorithm for the four populations. Again,

different from the observation of Gunning et al. (2008), near-equal CVs do not appear in the

optimum stratification. Instead, the equal-size strata(ES) and the optimal strata(LH-ES and LH-

GP) are more similar in their patterns in the stratum CVs.
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Figure 4.2. Stratum boundaries
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Figure 4.3. Stratum coefficients of variation
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Figure 4.4. Stratum sizes

4.3. Near optimality

We compare three optimization approaches, the LH algorithm(LH) and the random search algorithm

with differing in their objective functions using Neyman allocation. The first two approaches are

to minimize the total same size for the required CV level, while the last approach is to minimize

the variance of the stratified sample mean for the required sample size: that is,

(1) LH: to minimize n = n(k) for a given level c of CV,

(2) RSn: to minimize n = n(b) for a given level c of CV,

(3) RSv: to minimize V = Vstr(x̄str|b) for a given sample size n.

Due to difference in the objective function, we first obtained the sample sizes by the LH algorithm

and the first type of the random search algorithm(RSn) for 1% level of CV, respectively. In order

to make comparable results, we used the sample size determined from the LH algorithm to get the

optimum stratum boundaries for the second type of the random search algorithm(RSv). Table 4.3

gives the results by each of the three optimum stratification approaches including sample size,

variance and stratum sizes for each population. It can be observed that the first two approaches(LH

and RSn) do not necessarily produce the same sample sizes for all of the four populations. They

obtain the same sample sizes for Populations 1 and 3 but LH gives slightly smaller sample size

for Population 2 but the larger size for Population 4 as compared to RSn. The variance may not

be the same with the same sample size. Smaller sample size even produces smaller variance as

seen in Population 4. These results are arisen from the different stratum sizes by approaches. LH

tends to give slightly larger take-all stratum, while RSn tends to produce a bit smaller take-some

strata. RSv tends to give the results similar to that of the LH algorithm. These patterns in stratum

sizes are also illustrated in Figure 4.4. Such discrepancies in those quantities(sample size, variance,
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Table 4.3. Stratum sample sizes, variances and stratum sizes by stratification approaches

Population
Stratification Sample

Variance
Stratum Size

Approach size N1 N2 N3 N4 N5

LH 384 3.5260 990 862 601 417 130

1 RSn 384 3.5314 1078 836 585 372 129

RSv 384 3.5260 991 861 601 417 130

LH 172 98.4109 772 973 852 392 11

2 RSn 173 98.1198 782 992 814 404 8

RSv 172 98.4098 773 973 850 393 11

LH 375 0.7893 1167 819 588 284 142

3 RSn 375 0.7892 1172 814 590 284 140

RSv 375 0.7887 1170 820 592 284 137

LH 214 0.3810 765 921 815 463 36

4 RSn 212 0.3808 975 1008 663 325 29

RSv 214 0.3809 769 916 816 463 36
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Figure 4.5. Sampling fractions by strata

stratum sizes) show that a potential improvement of the optimum stratification process may be

marginal, similarly seen in Slanta and Krenzke (1996). Interestingly, the shapes of the stratum

sizes are similar to those of the corresponding population distributions shown in Figure 4.1.

Another interesting observation to be pointed out is that the pattern of the relative sizes of the

sampling fractions is about opposite to that of the corresponding stratum sizes. Figure 4.5 present

the sampling fraction for each stratum by approaches. Therefore, the sample sizes and the allocation

rates for the take-some strata tend to be roughly similar in size regardless of the population as seen

in Table 4.4 and 4.5, respectively.



1286 Inho Park

Table 4.4. Variance and stratum sample sizes by stratification approaches

Population
Stratification

Variance
Sample Size

Approach n1 n2 n3 n4 n5

LH 3.5260 56 63 60 75 130

1 RSn 3.5314 67 63 61 64 129

RSv 3.5260 56 63 60 75 130

LH 98.4109 39 39 43 40 11

2 RSn 98.1198 40 41 40 44 8

RSv 98.4098 39 39 43 40 11

LH 0.7893 62 55 63 53 142

3 RSn 0.7892 64 54 63 54 140

RSv 0.7887 64 55 65 54 137

LH 0.3810 36 36 47 59 36

4 RSn 0.3808 52 48 43 40 29

RSv 0.3809 36 35 47 60 36

Table 4.5. Variance and stratum sample allocation rates by stratification approaches

Population
Stratification

Variance
Sample Size

Approaches a1 a2 a3 a4 a5
LH 3.5260 0.220 0.248 0.236 0.295 -

1 RSn 3.5314 0.263 0.247 0.239 0.251 -

RSv 3.5260 0.220 0.248 0.236 0.295 -

LH 98.4109 0.242 0.242 0.267 0.248 -

2 RSn 98.1198 0.242 0.248 0.242 0.267 -

RSv 98.4098 0.242 0.242 0.267 0.248 -

LH 0.7893 0.266 0.236 0.270 0.227 -

3 RSn 0.7892 0.272 0.230 0.268 0.230 -

RSv 0.7887 0.269 0.231 0.273 0.227 -

LH 0.3810 0.202 0.202 0.264 0.331 -

4 RSn 0.3808 0.284 0.262 0.235 0.219 -

RSv 0.3809 0.202 0.197 0.264 0.337 -

5. Summary

Due to its simplicity in the formation of the stratum boundaries, the geometric stratification is very

handy and appealing to survey planners. However, no clear evidence is shown with our numerical

examples in Section 4 that the stratum boundaries by the geometric stratification algorithm are

not (near) optimal, indicating that the equality of the stratum coefficients of variation may not be

a better strategy in pursuing the optimum stratification. Instead, the shapes of the stratum sizes

are rather similar to those of the corresponding population distributions. Furthermore, the sample

allocation rates and the stratum sample sizes tend to be roughly the same in their magnitude for

the take-some strata.

In addition, numerical difficulties seen in some of the literature may not be serious much in im-

plementing the LH algorithm. However, slow convergence problems were found when comparing

various optimization approaches. This observation may arise from the fact that both the sample

size and the variance of the stratified sample mean are functions of stratum boundaries and sample

sizes, which are both discrete in nature.
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