Abstract
As wireless spectrum resources become more scarce while some portions of frequency bands suffer from low utilization, the design of cognitive radio (CR) has recently been urged, which allows opportunistic usage of licensed bands for secondary users without interference with primary users. Spectrum sensing is fundamental for a secondary user to find a specific available spectrum hole. Cooperative spectrum sensing is more accurate and more widely used since it obtains helpful reports from nodes in different locations. However, if some nodes are compromised and report false sensing data to the fusion center on purpose, the accuracy of decisions made by the fusion center can be heavily impaired. Weighted sequential probability ratio test (WSPRT), based on a credit evaluation system to restrict damage caused by malicious nodes, was proposed to address such a spectrum sensing data falsification (SSDF) attack at the price of introducing four times more sampling numbers. In this paper, we propose two new schemes, named enhanced weighted sequential probability ratio test (EWSPRT) and enhanced weighted sequential zero/one test (EWSZOT), which are robust against SSDF attack. By incorporating a new weight module and a new test module, both schemes have much less sampling numbers than WSPRT. Simulation results show that when holding comparable error rates, the numbers of EWSPRT and EWSZOT are 40% and 75% lower than WSPRT, respectively. We also provide theoretical analysis models to support the performance improvement estimates of the new schemes.