깡충거미 표면 접착장치의 미세구조 분석

Fine Structural Analysis of the Attachment Devices in the Jumping Spider Plexippus setipes

  • 문명진 (단국대학교 첨단과학대학 생명과학과) ;
  • 박종구 (단국대학교 첨단과학대학 생명과학과)
  • Moon, Myung-Jin (Department of Biological Sciences & Institute of Basic Sciences, Dankook University) ;
  • Park, Jong-Gu (Department of Biological Sciences & Institute of Basic Sciences, Dankook University)
  • 투고 : 2009.04.18
  • 심사 : 2009.06.23
  • 발행 : 2009.06.30

초록

거미의 외골격은 그 특성상 소수성이며 접착성이 없는 구조를 지니고 있지만, 일부 배회성 거미들은 부드럽고 건조한 표면을 따라 보행할 수 있는 독특한 접착장치를 지니고 있다. 본 연구는 거미류 접착보행 장치의 미세구조적 특성을 규명하기 위하여 깡충거미과의 세발깡충거미 (Plexippus setipes)를 실험재료로 하여 4쌍의 보행지에 형성된 접착장치를 고배율의 주사전자현미경으로 관찰하였다. 그 결과, 각각의 보행지에서 2개의 발톱(claw)과 강모다발 (scopula)이 관찰되었는데, 건조한 표면에 대한 부착력은 강모다발의 특이한 구조로부터 발생됨이 확인되었다. 각 보행지마다 약 160개의 강모 (seta)가 관찰되었는데, 표면과 접촉을 이루는 방향에 따라 두 집단의 강모다발로 구분되었다. 강모의 배면을 따라 형성된 무수한 감각모로 인해 인접 강모들과의 접착이 차단되어 있었고, 강모의 복면에서는 고밀도로 밀집된 미세강모 (setule)들이 관찰되었다. 미세강모의 첨단부는 역삼각형의 주걱모양으로 펼쳐져 충분한 접촉면을 확보하고 있었으며, 미세강모의 유연성과 그 표면에 형성된 큐티클 함몰부의 미세구조 등이 깡충거미류 부착장치의 특성임을 확인할 수 있었다.

Fine structure of the dry adhesion system in the tarsal appendages of the jumping spider Plexippus setipes (Araneae: Salticidae) with examined using field emission scanning electron microscope (FESEM). The jumping spiders have the distinctive attachment apparatus for adhesion on smooth dry surface without sticky fluids. They attach to rough substrates using tarsal claws, however attachment on smooth surfaces is achieved by means of a tuft-like hair called a scopula. All eight legs have the scopulae with a pair of claws on the tip of feet, and each scopula is composed of two groups of setae that are capable of dry adhesion on smooth surface. The apex of each seta is flattened pad bearing many specialized adhesive setules on one side. The cuticular sensillae are interspersed at the dorsal surface of the seta. It has been revealed by this research that the contact area of the setule is always a triangular shape, and these cuticular surfaces are connected by the elongated stalks from the underlying setae. Moreover, adhesion between the numerous setules and the setae was prevented by the microscopic hairs, since these were interspersed on the upper side of the setae.

키워드

참고문헌

  1. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ: Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99 : 12252-12256, 2002 https://doi.org/10.1073/pnas.192252799
  2. Arzt E, Gorb S, Spolenak R: From micro to nano contacts in biological attachment devices. Proc Nat Acad Sci USA 100 : 10603-10606, 2003 https://doi.org/10.1073/pnas.1534701100
  3. Betz O, Kolsch G: The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33 : 3-30, 2004 https://doi.org/10.1016/j.asd.2003.10.002
  4. Dixon AFG, Croghan PC, Cowing RP: The mechanism by which aphids adhere to smooth surfaces. J Exp Biol 153 : 243-253, 1990
  5. Eisner T, Aneshansley DJ: Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci USA 97 : 6568-6573, 2000 https://doi.org/10.1073/pnas.97.12.6568
  6. Emerson SB, Diehl D: Toe pad morphology and mechanisms of sticking in frogs. Biol J Linn Soc 13 : 199-216, 1980 https://doi.org/10.1111/j.1095-8312.1980.tb00082.x
  7. Federle W, Rohrseitz K, Holldobler B: Attachment forces of ants measured with a centrifuge: better 'wax-runners' have a poorer attachment to a smooth surface. J Exp Biol 203 : 505-512, 2000
  8. Federle W, Brainerd EL, McMahon TA, Holldobler B: Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98 : 6215-6220, 2001 https://doi.org/10.1073/pnas.111139298
  9. Foelix RF: Biology of Spiders (2nd ed.). Oxford Univ Press, London, pp. 1-330, 1996
  10. Frazier SF, Larsen GS, Neff D, Quimby L, Carney M, DiCaprio RA, Zill SN: Elasticity and movements of the cockroach tarsus in walking. J Comp Physiol A 185 : 157-172, 1999 https://doi.org/10.1007/s003590050374
  11. Gao H, Yao H: Shape insensitive optimal adhesion of nanoscale fibrillar structure. Proc Natl Acad Sci USA 101 : 7851-7856, 2004 https://doi.org/10.1073/pnas.0400757101
  12. Gorb SN: The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265 : 747-752, 1998 https://doi.org/10.1098/rspb.1998.0356
  13. Gorb S, Gorb E, Kastner V: Scale effects on the attachment pads and friction forces in syrphid flies (Diptera: Syrphidae). J Exp Biol 204 : 1421-1431, 2001
  14. Gorb SN, Beutel RG, Gorb EV, Jiao Y, Kastner V, Niederegger S, Popv VL, Schwars U, Votsch W: Structural design biomechanics of friction-based releasable attachment devices in insects. Int Comp Biol 42 : 1127-1139, 2002 https://doi.org/10.1093/icb/42.6.1127
  15. Green DM: Adhesion and the toe-pads of treefrogs. Copeia 1981: 790-796, 1981 https://doi.org/10.2307/1444179
  16. Groome JR, Townley MA, de Tschaschell M, Tillinghast EK: Detection and isolation of proctolin-like immunoreactivity in Arachnids: Possible cardioregulatory role for proctolin in the orbweaving spiders Argiope and Araneus. J Insect Physiol 37 : 9-19, 1991 https://doi.org/10.1016/0022-1910(91)90013-P
  17. Hanna G, Barnes WJP: Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155 : 103-125, 1991
  18. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E: Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Nat Acad Sci USA 102 : 16293-16296, 2005 https://doi.org/10.1073/pnas.0506328102
  19. Hill DE: The pretarsus of salticid spiders. Zool J Linn Soc Lond 60 : 319-338, 1977 https://doi.org/10.1111/j.1096-3642.1977.tb00838.x
  20. Jiao Y, Gorb S, Scherge M: Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera: Insecta). J Exp Biol 203 : 1887-1895, 2000
  21. Karnovsky MJ: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27 : 137A, 1965
  22. Kesel AB, Martin A, Seidl T: Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206 : 2733-2738, 2003 https://doi.org/10.1242/jeb.00478
  23. Kesel AB, Martin A, Seidl T: Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13 : 512-518, 2004 https://doi.org/10.1088/0964-1726/13/3/009
  24. Maddison WP, Hedin MC: Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics 17 : 529-549, 2003 https://doi.org/10.1071/IS02044
  25. Niederegger S, Gorb S: Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J Insect Physiol 49 : 611-620, 2003 https://doi.org/10.1016/S0022-1910(03)00048-9
  26. Niederegger S, Gorb S, Jiao Y: Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera: Calliphoridae). J Comp Physiol A 187 : 961-970, 2002 https://doi.org/10.1007/s00359-001-0265-7
  27. Rovner JS: Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42 : 99-108, 1978
  28. Ruibal R, Ernst V: The structure of the digital setae of lizards. J Morphol 117 : 271-94, 1965 https://doi.org/10.1002/jmor.1051170302
  29. Slifer EH: Vulnerable areas on the surface of the tarsus and pretarsus of the grasshopper (Acrididae: Orthoptera) with special reference to the arolium. Ann Ent Soc Am 43 : 173-188, 1950 https://doi.org/10.1093/aesa/43.2.173
  30. Stork NE: A comparison of the adhesive setae on the feet of lizards and arthropods. J Nat Hist 17 : 829-835, 1983 https://doi.org/10.1080/00222938300770641
  31. Walker G, Yule AB, Ratcliffe J: The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool Lond A 205 : 297-307, 1985 https://doi.org/10.1111/j.1469-7998.1985.tb03536.x
  32. Williams EE, Peterson JA: Convergent and alternative designs in the digital adhesive pads of Scincid lizards. Science 215 : 1509-1511, 1982 https://doi.org/10.1126/science.215.4539.1509